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PREFACE 

This volume contains the lecture notes delivered at the third New Zealand 

Symposium on Laser Physics, held at the University of Waikato, Hamilton, from 

January 17th to 23rd 1983. This meeting like the previous ones held in 1977 and 

1980 brought together a group of about 60 physicists working in both experimental 

and theoretical laser physics from many countries. One of the strengths of these 

meetings lies in the new interactions and collaborative efforts generated by 

lectures and discussions between physicists working in what sometimes seem to 

be disparate areas. 

Currently one of the most interesting and fast developing areas in laser 

physics concerns optical bistability and the transition to chaotic behaviour of 

optical systems, and this theme runs through many of the papers presented here. 

The editors would like to express their gratitude to the lecturers for 

providing detailed notes for publication shortly after the meeting, and to the 

various organisations who provided financial support. These include the New 

Zealand Institute of Physics (Inc.), the British Council, the Royal Society of 

New Zealand, the University of Waikato and the following Companies:- Spectra 

Physics Inc., Quentron optics Pty, Radiation Research, Exciton, Spex, Oriel, 

Lumonics, Burleigh Instruments and Scientec. 

The success of this meeting and the relaxed atmosphere of the University 

Campus in mid-summer have established the Symposium as a triennial event. We 

look forward to another stimulating and productive meeting in 1986. 

Hamilton, New Zealand 

March 1983 

J.D. Harvey 

D.F. Walls 
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OPTICAL BISTABILITY IN SEMICONDUCTORS 

S.D. Smith and B.S. Wherrett 

Physics Department 

Heriot-Watt University 

Edinburgh EHI4 5AS Scotland 

i. INTRODUCTION 

(i) (2) 
Since the first observations of optical bistability in semiconductor materials 

in 1979 considerable progress has been made in extending to a variety of wavelengths, 

different materials and more practical temperatures compared to the original observa- 

tions. Present observational parameters are listed below with holding intensities 

estimated very approximately. 

Material Wavelength Temperature Intensity and Cormaent 

InSb 5.4~m 77K W/cm 2 
cw 

InSb 9-11~m 300K 100KW/cm 2 

pulsed 

GaAs 0.8~m 120K 50KW/cm 2 

GaAs (MQW) 0.8~m 300K 50KW/cm 2 
Multiple Quantum 
Well Structure 

Te 10.6~m 300K MW/cm 2 

Si 1.06~m 300K MW/cm 2 

ZnS, ZnSe 0.7~m 300K W/cm 2 
interference Thermal? 
filters 

GeSe2 0.7~m 300K Photostructural 
Slow? 

The majority of these observations have been reviewed (3) or reported at the Munich 

International Quantum Electronics Conference; (4) we therefore report here on new 

experimental results in InSb, which material continues to act as the "hydrogen atom" 

of solid state bistable devices because of its capability to be operated cw or 

addressed by external pulses. 



On the theoretical side, the microscopic understanding of the third order nonlinearities 

involved in optically bistable devices has developed within the envelope of dynamical 

nonlinear effects introduced by promotion of free carriers into otherwise unoccupied 

states; (5) there remains much confusion as to the origin of these effects in the 

literature. We attempt to review and derive these various processes from a 4-stage 

virtual transition approach which indicates the predominant importance of the effects 

of blocking interband transitions. 

2. EXPERIMENTAL 

i) The Optical AND Gate 

We report the novel operation of a natural reflectivity InSb bistable resonator at 

77K, pumped with a cw CO laser at 1819cm -I , as a single pulse detector with definite 

threshold energy and as an optical AND gate. The two switching pulses for the AND 

gate logic operation are 30 psec single, switched-out pulses from a mode-locked 

Nd:YAG laser. Introduction of a variable time delay between the logic pulses provides 

a unique technique for measurement of the photogenerated carrier lifetime and yields 

a recombination time of ~ 90nsec for a cw CO holding intensity of ~ 80W/cm 2. 

A Fabry-Perot cavity was constructed from an InSb crystal (n-type ~4 x 1014cm -3) of 

% 210~m thickness and with natural reflectivity (R ~ 0.36) polished faces. Radiation 

from an Edinburgh Instruments PL3 cw CO laser operating at 1819cm -I incident over a 

i/e 2 intensity beam diameter of ~200vm produced the bistable transmission character- 

istic shown in Figure l(a). 

This device was externally switched (6) from OFF to ON resonance using a single, 30 psec 

switched-out pulse from a mode-locked Nd:YAG laser. The bistable element was held 

off-resonance, between the two switching thresholds, close to switch-up with a constant 

CO holding power of % 26mW. Switch-on was then achieved whenever a pulse from the 

Nd:YAG laser above a measurable threshold energy was incident on the effective area 

of the sample defined by the CO beam as shown in Figure l(b). Once this condition had 

been established the device remained on-resonance until the CO beam was interrupted 

to return the transmission to the lower branch. Thus the device was acting as a 

memory element which registered and stored the incidence of a single 30 psec pulse 

above a given threshold energy. 

The change in refractive index per absorbed carrier per unit volume has previously 
(5) 

been deduced from experiment and the characteristic response time for this non- 

linearity is determined by the rate at which carriers are excited into states where 

they can be effective; which is controlled by the incident intensity. Carriers are 

introduced by the 1.17eV Nd:YAG photons by two means. They will be raised from the 

split-off valence band (~ 1.13eV below the conduction band at 77K) and also excited 

from the heavy hole valence band to higher levels in the conduction band and sub- 

sequently scattered to the band minimum. 
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Figure I (a) : 

(b) : 

Transmitted power plotted against incident power for a cw CO laser 
beam (wavenumber ~1819cm -1 and spot size ~ 200~m) passing through 
a natural re~ectivity InSb cavity (thickness ~210vm, carrier 
concentration ".4 x 101~cm -3 (n-type)) at ??K. 

Transmission of incident cw CO laser beam at ~ 26roW showing 'on- 
switching' caused by single switched-out, 30 psec pulses from a 
Nd:YAG laser. Switch-off is caused by interrupting the CO holding 
beam. 



Experimentally, consistent switch-up was achieved with ~ 5nJ of Nd:YAG laser energy 

over the effective area of the focussed CO beam. The large absorption coefficient 

of 1.06~m radiation (~ 10~cm -I) results in the carriers altering the effective optical 

thickness (nl) of the cavity in the immediate vicinity of the absorbed pulse. This 

is however as effective as an even distribution of carriers throughout the entire 
L 

length (since ~(nl) = I An(1)dl). Thus calculation of the induced change in refrac- 
o 

tive index caused by the Nd:YAG generated carriers is shown to be sufficient to cause 

switching within the duration of the switching pulse. The effect of saturation of 

the nonlinearity, carrier diffusion and recombination will all have a bearing on the 

details of the switching process but leave the main conclusion unchanged: that the 

lower limit on the switching-on speed should be the optical field build-up time within 

the cavity (TC) given by T ~ 2nL/c(l-R) which is ~8 psec for the 210~m thick cavity 
c 

operating here. 

Whilst the switch-on time may be controlled as discussed above, the switch-off time 

is controlled by the carrier relaxation rate from the excited state when the cavity 

field is reduced below the ON-resonance condition. The lifetime of these excited 

carriers was investigated by splitting the Nd:YAG switching pulse into two component 

pulses and recombining them at the crystal. No switching was observed when either 

one of the component pulses was incident individually on the sample. When both pulses 

were incident simultaneously switching to the upper branch and holding was observed. 

Thus the device acts as an optical AND gate only providing a high transmission of the 

CO beam on simultaneous arrival of two Nd:YAG pulses of sufficient combined energy. 

The excited lifetime of these externally introduced carriers must be sufficiently 

long to enable the build-up of CO laser field inside the cavity to maintain the on- 

resonance condition after completion of the Nd:YAG pulse otherwise the device would 

switch-off again. 

By temporally separating the two component pulses by a variable delay, the excited 

state lifetime of the carriers introduced by the initial pulse was determined. The 

cl~nulative effect of the two pulses is dependent on the rate at which the carrier 

population introduced by the initial pulse has decayed on introduction of the delayed 

pulse. A novel procedure was adopted which avoided any absolute measurement of the 

pulse intensities by employing the threshold nature of the switching. The delayed 

pulse alone was attenuated with standard calibrated filters to a known percentage 

below the threshold switching energy. Using a delay line up to 250 feet long, a 

carrier lifetime of ~ 90ns was determined for the experimental sample. 

ii) O~ticgl ' Bistability in InSb at Room Temperature 

We report the observation of optical bistability in an InSb resonator at room tempera- 

ture. This effect and fringe shifts were caused by nonlinear refraction induced by 

two photon absorption of radiation from a single longitudinal mode injection-locked 

pulsed CO2 laser operating at 9.6 to 10.6~m. Intensities as low as 100kW/cm 2 were 



found to be sufficient to tune the 250~Lm thick cavity through a fringe maximum. From 

our results we deduce a value of X (3) of the order of i0 -~ e.s.u, over the range of 

intensities investigated. 

Figure 2(i) shows the raw data obtained for the sample at different resonator tunings. 

These clearly show the self-tuning of the InSb crystal due to laser intensity where 

each peak in the transmitted pulse corresponds to tuning through a fringe maximum. 

For each set of data we have plotted (Fig. 2(ii)) the corresponding relationship 

between the input and transmitted instantaneous intensities. These display hysteresis 

loops associated with optical bistability. These plots have also been obtained 

dynamically by connecting the incident and transmitted signals to the x and y plates 

of a Tektronix 7104 with identical results. We also deduce that the resulting change 

in peak position indicates that refractive index is decreasing with intensity whereas 

if the effect is thermal we would expect an increase. This result, combined with the 

observed speed of switching confirms an electronic effect; further experiments up to 

20MW/cm 2 also indicate negligible absorptive effects up to iMW/cm 2 . 

We can see from these plots that there is a sharp switch up from off-resonance level 

to on-resonance level consistent with a nonlinear cavity with optical feedback. The 

switch down is slower due to the long lifetime of the carriers. Transient loops are 

also obvious, consistent with the lifetime of the carriers being of the order of the 

laser pulse length. The transient effects are smaller at high intensities where the 

carrier lifetime decreases with the increased population. 

In conclusion we have demonstrated that with relatively modest intensities (~ 100kW/cm 2) 

we can induce at room temperature optical tuning in n-InSb and also construct 

optically bistable devices. From our measurements we obtain values of dn/dI as 

0.2cm2/MW at i00 kW/cm 2 and 0.12cm2/MW at 500kW/cm 2. These correspond to a value of 

X (3) of the order of i0 -~ e.s.u, over the range of intensities investigated. (7) 

3. MICROSCOPIC THEORY OF THIRD ORDER OPTICAL NONLINEARITY IN SEMICONDUCTORS 

There is a confusion present in much of the recent literature on semiconductor non- 

linear refraction. This confusion originates from the development of several 

apparently independent theories. Here we consider five theoretical approaches to the 

calculation of the nonlinear susceptibility (X (3)) and show that each is associated 

with the effect of interband transitions, even though some are conventionally referred 

to as free-carrier theories. By comparing groups of terms in X (3) the physical 

equivalence of the theories is established. New near-resonance calculations are 

presented, and the circumstances in which each of the various theories can be applied 

is discussed. 

Nonlinear refraction has recently been employed to produce optical bistability in the 

semiconductor InSb. (I-3) In similar materials degenerate four-wave mixing has been 
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achieved and phase-conjugation observed. In all the above experiments the radiation 

frequency lies just below the fundamental band edge. These phenomena are described 

theoretically through the nonlinear susceptibility X (3) (~,-~,~). It is interesting 

though that in their interpretations of the dominant contributions to X (3) various 

authors select apparently different mechanisms. It is the purpose of this paper to 

show in detail how the various models can be compared and to discuss the regions in 

which each may be valid. 

The models which will be discussed are: (i) the saturation and (ii) interband blocking 

models, both used by Wherrett and Higgins (WH)~8)which" predict the enormous X (3) 

values observed in InSb, (5) (iii) the intraband model introduced by Jain and Klein (9) 

with respect to their four-wave mixing experiments; (iv) the nonparabolicity calcula- 

tion of Wolff and Pearson (Wp)(10)for (2~ 1 - ~2 ) mixing processes, which has been 

adapted in order to interpret phase-conjugation experiments in HgCdTe; and (v) the 

density-matrix calculations of Jha and Bloembergen (JB)(ll)and Wynn~ 12) for (2/01 - ~2 ) 

mixing. These latter calculations are at first sight the most closely related of 
(3) 

the above theories to the original X density-matrix theory discussed by Butcher 

and MacLean (BM)(13~" Armstrong et.al!14~'" and later by many authors. It will be to 

this original work and to conventional perturbation theory expressions (cf. War~ 15)) 

that we must return in order to obtain a unified picture from which all the above 

models can be drawn. 

The range of experimental X (3) values is particularly intriguing. In (2401 - ~2 ) - 

mixing experiments in Si and Ge Wynne and Boy~16)obtained X (3) of order 10 -12 to 

10-11e.s.u. Similarly small magnitudes were obtained in the perturbation calculations 

of Jha and Bolembergen. (II'17) Also, in mixing experiments on n-type III-IV materials, 

Patel et.al. (18) observed X (3) values from i0 -ll to 10 -9 e.s.u., in agreement with the 

WP free-carrier susceptibility calculations. 

In contrast it is found from conjugation experiments in HgCdTe values of 10 -8 to 

3 x 10 -7 e.s.u, and Jain et.al. (5'6) quote 10 -7 e.s.u, for 1.06 m degenerate four- 

wave mixing in Si and 5 x 10 -6 e.s.u, in HgCdTe. (More recently they report 10 -2 

e.s.u, in the latter material). 

Finally Miller et.al.(5'19)observe nonlinear indices compatable with X (3) values from 

10 -2 to 1 e.s.u., in InSb. 

The sources of these remarkable differences must be found in the material and pt~np 

laser characteristics: in the bandgap and effective masses, the quality of the 

material, the laser power levels and most notably in the proximity of the radiation 

frequency to the band edge. 

4. SURVEY OF MODELS 

i) The optical-bistability experiments (1) and the beam-profile experiments of 
(2O) 

Weaire et.al, have been interpreted on the basis of the effect of interband 



absorption. That is, whilst the pump photon frequency (~) lies just beneath the 

nominal band edge (~) there is still assumed to be a measure of excitation across 
g 

the gap. (This may be described phenomenologically by introducing a T 2 - broadening 

of the electron states). The excited carriers will in turn affect the absorption 

coefficient itself and, by causality, must also lead to a nonlinearity in the refrac- 

tive index. If intraband nonradiative scattering is ignored then one is concerned 

with the direct saturation of essentially independent two-level systems each consist- 

ing of one specific k-state in the valence band and one in the conduction band. The 
(3) 

resulting individual contributions to X are highly resonant and indeed diverge 

unless a recombination process is included. Denoting the conduction to valence 

recombination time as T 1 then one finds for example, (8'19) 

(3) (~,-0b,~) - 1 lePcv ~2mr] ~ T1 
ReX(i) 47~h3 m~ <~ j ~ (~g - ~) ~2 (i) 

Pcv is the interband, momentum matrix element. 

ii) The interband blocking model is very similar to the above except in that intra- 

band non-radiative scattering is accounted for. Such scattering is taken to lead to 

independent thermal distributions of the excited carriers within the valence and 

conduction bands. Thus only the precise distribution of excited carriers need differ 

in these first two models - the X (3) values so calculated differ only by a numerical 

factor. The blocking model can however, be taken one stage further towards an empiri- 

cal model. As the distribution of carriers is not determined by the manner in which 

they were created, only by their total number, then the interband absorption can be 
(8,21) 

treated entirely empirically by assuming an absorption coefficient ~int 

Re" (3) (~,_~,~) = nc ePcv2 eint Tl(~ - W) -! (2) 
X(ii) 2~h ~ ~ g 

An alternative description of the blocking model is that the radiation, of intensity 

I, creates a steady-state change in the free carrier population AN = ~int ITl/h~ and 

one observes the contribution to the linear refraction due to these electrons. The 

nonlinearity appears only because of the manner in which the AN are created. 

In both of the above models we would note that it is the effect of the excited carriers 

in preventing (in part or wholly) further interband transitions that causes the non- 

linearity. In both cases, because the pump frequency lies below the transition 

frequencies one is reducing the positive refractive index contribution that would be 

present had the transitions remained. Thus the expected nonlinear index (n 2) or 

suceptibility (ReX (3)) is negative. The resonance behaviours as ~ approaches the 

edge are (~ _~)-3~ and (~ -~)-l~int(~) respectively. Finally one band does not 
g g 

require the existence of free carriers prior to the application of the electromagnetic 

radiation. If they are present then their effect is merely to modify the above 
(8) 

results in a small way. 



iii) Jain and Klein (9) invoke a different result for the effect of the interband- 

excited free-carriers on the linear dispersion. 

(3) nce 2 ~intT1 1 (3) 
ReX(iii) 2x~ ~0] m 

r 

This comes straight from standard free-carrier linear dispersion theory, with AN 

given as above. In order to compare this with result (2) we need only think of the 

origin of the reduced mass m in (3). In the simple, two-band model used to obtain 
r 

(2) the effective masses of the conduction (c) and valence (v) bands are given by 

m IPcv 12 
= 1_+2 

m c mh0] 
g 

v 

Now only the most resonant contribution to X (3) was included in (2). There are in 

principle two forms of non-resonant terms. (8) One originates from the vector 

potential (A) term in the current density (cf. Buteher and MacLean (13)) . The second 

nonresonant term is proportional to (0] + 0])-I. Strictly speaking then the resonance 
g 

behaviour is [260 /(o] 2 - 602)]. Including these terms, and taking the limit 0] << 03 
g g g 

then result (2) reduces exactly to (3). That is, the presence of mr, rather than the 

free electron mass, in (3) is again a consequence of the removal of specific inter- 

band transitions from the absorption spectrum. Equation "(3) is only valid in the 

limiting case of small frequencies. 

iv) Turning to the 'non-parabolicity' model for X (3) ~c01,-012,011) ; this should equate 

to the nonlinear refraction susceptibility when 0]2 is set e~ual to 011. The non- 

parabolicity calculation of wolff and Pearson (I0) is made on the basis that the group 

velocity of the free carriers is nonlinear in the momentum p and hence contains E 3 

terms when an electric field E is applied. Thus if we specify the E direction as x, 

the Px-dependence of the electron velocity is, 

V(Px ) = V(Pxo) + ~v Ap + ~p2 x -~- + 

IJ x 

As Ap, the field-induced change in p, is proportional E the cubic term will generate 

E 3 term in v providing ~/~p~ is non-zero, and hence a nonlinear current an density 
(3) 

conductivity, and finally electric susceptibility, X Considering an initial 
(10) 

population of NO conduction band carriers 

N0e~ (i + 8EF/5 E ) (4) R (3) 
eX (iv) = " 

4m2Ec g014 (i + 4EF/Eg) 5/2 

The inference of this calculation is that the mechanism for the nonlinearity is 

purely a free-carrier one. It is not immediately clear whether interband transitions 

(3) Neither is it clear whether one should play any role in the derivation of X(iv ) . 
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expect any resanance behaviour at frequencies close to ~ . At first sight however, 
g 

one is tempted to say that because the nonparabolicity has nothing to do with the 

radiation frequency, nor with interband radiative effects, we are dealing with purely 

intraband processes, which would not display any resonance enhancement. However, the 

fermi energy E F is almost always small compared to Eg, and therefore to a good 

approximation . (3) is directly proportional to the carrier concentration; electrons 
X(iv) 

near the band minimum contribute equally to those of higher energies. This seems to 

contradict the impression that nonparabolicity, which is significant usually only 

for the high k states, is the cause of the nonlinearity. The answer to these apparent 

contradictions is that rather than talk of the nonparabolicity as being the cause of 

the nonlinearity one should have in mind that the source of nonparabolicity - a fourth 

order k .p perturbation - is directly equivalent to the source of this X (3) - a fourth 

order A -p interaction - and therefore leads to similar expressions. As only the 

latter involves the radiation frequency we need return to A • p perturbation calcula- 

tions to bring in any resonance behaviour. Our first task then is to relate the 

nonparabolicity calculation to more conventional susceptibility calculations, broached 

in terms of virtual transitions. 

We note here that Khan et.al. (22) do quote a resonant enhancement, of form ~;/(~ _ ~)2 
g 

but do not provide its derivation. They find that such a factor is fairly consistent 

with their experimental results for reflected power for phase-conjugatlon in HgCdTe. 

(3) 
Even if one accepts this enhancement it is significant that the resulting X(iv ) 

expression contains no mention of T2, of T], or of the interband absorption coefficient. 

Therefore one is still left with the question, 'under what conditions should one use 
(3) (3) 

X(iv ) and under what conditions is a form such as X(ii ) more valid?' 

(3) 
It is significant also that X(iv ) relies on the initial presence of free carriers; 

also there is no long-term interband excitation process involved, and the sign of 

this nonlinearity is positive. These facts are all in contrast with those of the 

previous models. As we shall see however virtual interband transitions still provide 

the mechanism for this nonlinearity. 

At this stage it is useful to generalise upon the remark made in connection with the 

Jain quote of (3) X(iii). Just as the presence of effective masses (i.e. of ~v/Sp) in 

the expression for the linear susceptibility reflects the blocking of interband 

absorption so do we anticipate that the presence of ~v3/~p 3 terms in the nonlinear 

susceptibility also reflects such blocking. The logic of this statement becomes more 

apparent when we note, with Wolff and Pearson, that v is itself given by ~E/~p so 

that one is considering ~E/~k 2 - type terms in the nonparabolicity calculations and 

~2E/~k2 (effective mass) terms in the linear case. The resulting nonlinearity ends 

up the same order in both cases because the free-carriers are considered to be present 

initially in the former calculation but radiatively induced in the latter. 



11 

The significance of these energy differentials was first discussed by Butcher and 
(13) 

MacLean. Providing one can work in the limits that ~ is small compared to all 

interband transition frequencies and providing all lifetime effects can be ignored, 

they show that the nth-order nonlinear susceptibility is given by: 

= ~n+iE 
1 ~e]n+l ~ f (5) 

x(n)(~l "'" ~n) V[~l~2 ... ~n (~I + ... ~n)]~ih j ~,k ~k ~k n+l 
~ 

The proof of this expression originates from the density-matrix treatment of 

conductivities/susceptibilities. As lifetime effects must be ignored it is hardly 

surprising that one cannot use this method to generate the saturation results. What 

is required is to consider individual microscopic mechanisms that contribute pre- 
(n) 

dictable terms in X , i.e., the virtual transition schemes. These terms tend to 

be completely concealed in general expressions such as (5) and indeed in the other 

formal expressions presented earlier in the Butcher and MacLean treatment. However, 

we shall need to consider them very carefully when comparing resonant nonlinear 

refraction expressions. 

(v) The equivalence of the Wolff and Pearson result (4) to expression (5) was noted 
(ii) (12) 

by Jha and Bloembergen and by Wynne. Pointing out that the expression (4) 

cannot be valid at optical frequencies, the former authors go on to calculate X (3) 

numerically by summing over interband virtual transitions. As certain combinations 

of the frequencies they consider exceed the bandgap they require to include dephasing 

in order to avoid divergences due to exact resonance. Their n~erical results though 

differ from those of WP by somewhat less than a factor of two. In passing we also 

note that the dephasing time T = 10-13sec, which they introduce, would in linear 
c 

absorption, produce band tails that are dramatically larger than observed in practice. 

Thus any band-edge resonance would be considerably reduced. 

The expressions that must be computed in the JB perturbation model are of the form: 

e % Z 
X (3) (~i,~2,~3) = c,u,t,s,k fck x 
(v) Vh3m~1~2~3(~l + ~2 + ~ 3 )  ~ 

pn ~ Pt~s p~ cu Put sc 
[(£0 -GO 1 -062 -W3) (0Jtc-~01 -0J2) (~ -G01) + 23 terms] (6) 

uc s c 

The additional terms can be thought of as corresponding to different time-orderings 

of the radiative interactions, fck is the fermi population factor of the state ck.~ 

In order to avoid exact resonances~JB set ~ = (E - E )/h - i/Tc, etc. As we shall 
sc s c 

see, even if a T is introduced various problems arise if the frequencies ~i,~2,~3 
c 

are equal in magnitude, as required for nonlinear refraction. 
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5. TRANSITION SCHEME TREATMENTS 

In order to compare the models considered in the previous section we refer to the 

individual virtual transition schemes that are inherent in them. If one works with 

many-electron, Slater - determinant wave functions and with a many-electron radiation 

interaction that includes c-factors, p + 7, then X (3) can be written formally, using 

conventional perturbation theory as opposed to density-matrix theory: 

~n ITdY c ~cSb (3) = e ~ ~ ad ~ba 

Vh3m~01t02~03(Oal +~02 +t03) b'c'd[(~0da-~01 -¢02 -~3) (~ca-b~l -t°2) (Wba-°31) 
X naS7 

+ 23 terms] (7) 

Whilst this is an extremely unwieldy formula it has the merit that there is a one- 

to-one correspondence between each term and each allowed physical event. For example 

for the term shown we have a four-stage virtual transition scheme in which radiation 

of frequency oJ 1 and polarisation ~ causes an excitation from the initial (when no 

radiation is present) many-electron state la> to an excited state Ib>, one photon 

being removed from the radiation field at frequency ~1; and so on until one photon 

at frequency (031 +~2 +to3) , of polarisation B, is emitted. Energy is only conserved 

between the initial and final states of the entire system. The frequency denominators 

manifest the energy mismatch at the intermediate states. The 23 unspecified terms 

correspond to the different time-orderings of the four radiation interactions. 

Most importantly every transition must be in accord with Pauli exclusion and indeed 

every Pauli - allowed four-stage process appears just once in the sum. 

Using this approach, and comparing with the density matrix approach, we summarise the 

results as follows: the same physical processes, namely interband transitions are in 

fact represented indirectly in all the calculations referred to earlier. The source 

of X (3) is the prevention of interband transitions. Under resonant conditions, effects 

of damping (T2) and recombination (TI) must be included. One is then led naturally 

from the virtual transition scheme, via the saturation model to the blocking or 

"dynamic Burstein-Moss" model. This latter gives good order of magnitude agreement 

with experiment with only the lifetime T1 as a fitted parameter and now determinable 

independently from experiments such as described in 2(i). 

CONCLUSION 

The framework of a fully quantitative theory of X (3) in semiconductors which reconciles 

the large variation in magnitude and apparently differing theories has been laid. 
(23) 

Considerable scope for further work both experimentally and theoretically exists 

as progress is made towards practical all-optical circuit elements. 
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i. INTRODUCTION 

One of the attractions of the study of optical interactions is that tractable 

and to a large extent solvable theoretical models do in fact provide realistic 

descriptions of many experiments. In both theory and experiment many phenomena in 

quantum optics are rather stark in their conceptual simplicity and as such serve 

as ideal proving grounds for ideas from numerous areas of physics. Some of the 

most striking tests of quantum electrodynamlcs and indeed of the conceptual basis 

of quantum mechanics have been provided by experiments in quantum optics (I-4). 

Given the capability both to realize experimentally and to describe theoretically 

a diversity of phenomena and to do this in quantitative detail, it is then an 

exciting prospect to search for the limits of the validity of our understanding. 

Perhaps the most well studied of all systems in quantum optics are those that 

produce laser action (5-7). The basic ideas of the laser have given rise £o a 

number of laser-llke offspring, including the laser with saturable absorber and 

the laser with injected signal. In thls article our attention is to be directed 

to another member of this family, namely optical blstabillty. The general 

configuration that we wish to consider is as shown in Figure l(a); we will 

restrict our attention to blstabillty in passive systems. In the case of the 

laser above a certain threshold inversion density, the characteristics of the 

output field change dramatically as laser action commences. In the case of 

blatabillty a similar critical density exists for the intracavlty (noninverted) 

medium. Above a certain threshold density, the Input-output characteristics 

develop a hysteresis cycle, as shown in Figure l(b). 

In analogy with the development of the theory of the laser, much of the early 

theoretical work in optical blstabillty dealt with an Intracavlty medium composed 

of "two-level" atoms (8-|2). However the first (13) and subsequent observations 

of optical bistabillty were made in systems of considerably greater complexity 
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Figure I (a) Fabry-Perot interferometer containing a nonlinear intracavity medium. 
(b) Possible input-output characteristic for such an interferometer illustrating 
hysteresis and bistability (two values of IEtl possible for a given input IEil). 

than the simple two-level system, although as has been stressed repeatedly by 

Gibbs and McCall there is a unifying formalism for the description of the general 

features of optical blstabillty that relies only on phenomenologlcal properties of 

the nonlinear medium (13,14). A great deal of progress has been made in the study 

of optical blstablllty, and it is an active area of research wlth interest derived 

from its potential application to optical signal processing systems (15~16) and 

from its relationship to nonequillbrlum statistical mechanics (17,18) and to 

cooperative interactions in atomic physics (19). In spite of this activity there 

has remained somewhat of a gulf between an extensive theoretical literature on 

blstabillty wlth two-level atoms and actual experimental systems. Several groups 

including our own have initiated research to try to bridge thls gap wlth 

experiments that to a good approximation involve two-level atoms (20-23). In such 

experiments both the phenomenologlcal descriptions and the fully quantlzed 

theories of optical blstabillty can be put to searching tests. 

Our presentation is divided into five sections; in Section 2 we develop a 

simple theory that wlll serve to establish a basic vocabulary for our subsequent 

discussions. In Section 3 we describe our apparatus and present observations of 

the evolution of the steady-state hysteresis cycle in absorptive bistability. 

Section 4 is devoted to the formulation of a more complete theory of our 

experiments, including the effects of the standlng-wave Gausslan mode structure of 

the interferometer and the Doppler-broadened absorption of the atomic beams. In 

Section 5 we conclude wlth a quantitative comparison of theory and experiment. 

2. PLANE WAVE THEORY FOR A FABRY - PEROT RESONATOR 

In order to obtain a simple working model for our investigation of optical 

blstabilfty, we follow the treatment first presented by Szbke et al. (8) and later 

developed by a number of workers, most notably by McCall (9) and by Bonifaclo and 
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Lugiato (I0). Consider a Fabry-Perot resonator such as the one sketched in Figure 

l(b) that contains an intracavity medium described by the complex susceptibility 7 

= X" - ix". For the representation of the various fields we choose that of the 

complex analytic signal (24), with the definitions 

~i(z,t ) = Eie-i(mt - kz) ~ + c.c. 

~F(z,t ) = ~F(z)e-i(~t - kz) ~ + c.c. 

~t(z,t ) = Ete-i(~t - kz) ~ + c.c. 

(2.1) 

and 

~B(z,t ) = EB(z)e-i(mt + kz) ~ + c.c. 

~r(Z,t ) = Ere-i(~t + kz) ~ + c.c. 

(2.2) 

The incident field is assumed to be polarized with complex polarization vector ~, 

and the mirrors of the cavity to be identical, with complex reflection and 

transmission coefficients for the field amplitudes of rei~r and tei~t for waves 

travelling into the cavity, and of r'ei~r" and t'ei~t" for waves travelling out of 

the cavity. We take the cavity to be filled with a dilute gas composed of 

"two-level" atoms (25) and assume that the excitation frequency m is tuned to the 

atomic resonance. Since X" = 0 in this case (26) we may write the wave vector k 

for propagation inside the cavity as 

k = k o + i ~ ( 2 . 3 )  
2 

where k o = ~/c and a = koX" is an absorption coefficient that includes both the 

possibility of a nonlinear loss =a for the atomic medium as well as a distributed, 

nonsaturable background loss ~, 

= a a + ~. (2.4) 

In the steady state we can solve for the field amplitude e t by summing over 

the successive contributions that result from multiple round trips within the 

cavity. Following the standard treatment of Born and Wolf (24) we find 
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) ~L r,2e21(~r, + kL) + r,4e41(~r, + kL) + .] e t = eott'ei(~t + t" e-~-[1 + .. 

eott'ei(~t + ~t '  ) ~L e ~  
2 

~t = 1 - r" 2e21mr'e21kLv (2.5) 

With the definitions T ~ tt" and R ~ r "2, the ratio of transmitted to incident 

intensity is thus found to he 

let 12 T2e-~L 

T(~) = _ _  Re-~L) 2 ~ (2.6) 
lei 12 (I - + 4Re -~e sin2( ) 

The quantity 6 ~ 2(~ r" + koL) is the phase compounded in a round trip through the 

cavity. Since we wish to consider only absorptive bistabillty in a tuned cavity, 

we take 6 = 2~p, p = integer, so that Eqn. (2.6) reduces to 

let 12 T2e-=L 
{et{ ---- '~= (1 - Re-aL) 2" 

(2.7)  

Note that since the absorption coefficient =a in general depends upon the local 

strength of the intracavlty field, which is in turn related to E t via the boundary 

condition at the output mirror, Eqn. (2.7) represents a rather complex implicit 

specification of the transmission function of the Fabry-Perot cavity. 

Our reference point for describing the behavior of the cavity will of course 

be that of the cavity in the absence of the nonlinear medium, for which =a = 0 and 

= = ~. We will refer to this case as the "empty-cavlty" case, and from Eqn. (2.6) 

calculate the finesse F as the ratio of the separation in phase 6(=2~) between 

successive spectral orders to the full Width E of the transmission function at 

half intensity. With T (6) equal to one half of its maximum value at 6 = 2~p±~, 

Eqn. (2.6) leads to 
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so that 

F = ~/R e -~-L/2 ~ (2.8) 

(I - Re -~--L) (I - R) + ~--L 

where these results follow for (I - R), ~ << I. The peak transmission of the 

empty cavity occurs at 6 = 2~p, which from Eqn. (2.6) is 

T 2 -~--L T2 
T(6 = 2~p) ~ To _ e ~ , (2.9) 

(1 - Re-~-L) 2 (I- R + ~-L) 2 

again in the limit of small cavity losses. Note that while we have assumed cavity 

losses of the form [(I - R) + ~--L], in general the denominators in Eqns. (2.8) and 

(2.9) represent the total single pass loss in intensity and would include, for 

example, diffraction losses or losses at intracavity optical elements. 

Another feature of the empty cavity that will be important in our discussion 

of optical bistability is the ratio of intracavlty intensity to incident 

intensity. Taking the intracavity field to be of the form (Eqns. (2.1) and (2.2)) 

E(z,t) = e(z)e -iwt ~ + c.c. 

= [eF(z)e ikz + eB(z)e-lkZJe-i~t ~ + c.c. (2.10) 

we obtain expressions for e F and e B by summing over the multiple reflections 

within the cavity at some point 0 < z < L. For exact resonance 6 = 2~p, and such a 

procedure combined with the definitions of Eqn. (2.10) leads to 

l e (z ) ]  2 2T 

{ e i  {.2 (1 - R + a--L) 2 
[1 + cos (2koZ + ~ r , ) ] ,  (2 .11)  



19 

where once again (I - R), ~r L << I. Eqn. (2.11) clearly displays the standing-wave 

nature of the intracavlty field. In the simple analysis of this section we wish 

to avoid the complexity associated with this spatial variation, and so we will 

average IE(z)l 2 over many wavelengths to produce an average intensity IEI 2, with 

: le l  2 : 2T , (2.12a) 

lei 12 (I-R +=--L) 2 

or by combining Eqns. (2.8) and (2.9) with (2.12), 

2f T o 
- - -  F. (2.12b) 

This expression is certainly no surprise; for an ideal cavity with =--L = 0 and T + 

R = I (no absorption or scatter loss at the mirrors) Eqn. (2.12) reduces to 

lel 2 2 

which expresses an enhancement in Intracavity intensity due to the 'quality 

factor" of the cavity and to the incoherent sum of two oppositely directed 

travelling waves. 

With the characteristics of the empty cavity as given by Eqns. (2.8), (2.9), 

and (2.12) in mind, we now return to Eqn. (2.7) in the case ~a ~ O. The particular 

form for the saturable absorber and hence for ~a that we choose (although this 

choice has to be modified in the quantitative theory) is that appropriate for a 

homogeneously broadened intracavlty medium driven on resonance, namely (25,26) 

~o 
~a = 1 + l-7~s' (2.13) 

with =o as the absorption coefficient at intensities I much less than the 

saturation intensity I s • For a system of "two-level" atoms in the absence of 

inhomogeneous broadening, with purely radiative relaxation and with aligned 
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dipoles relative to the 

expressions (25-28) 

driving field, So and I s are given by the simple 

3 k2p (2.14) =o = ~ p  = ~  

and 

~a 
Is = - - ~ - 7 i '  (2.15) 

with ~ m resonant absorption cross section at the atomic transition frequency ma' 

y ~ transverse relaxation rate, and p ~ atomic number density. 
i 

For our consideration of an Intracavlty medium, the intensity I and hence ~a 

that appear in Eqn. (2.13) are functions of z. In addition as we shall see in 

Section 4, for moving atoms our whole treatment must he modified to account for 

atomic motion through the standlng-wave field. Nonetheless for our simple theory, 

we continue to consider the case of a cavity with small losses (~-L, mo L, (I - R) 

<< I) and seek to relate the intracavlty intensity I appearing in Eqn. (2.13) to 

the transmitted field e t, in as simple a way as possible. We have 

I ( z )  = 2 ~ o C l e ( z ) l  2 ( 2 . 1 6 )  

so that 

I ~ 2eoClel 2 = 2eoC{21eFI 2} (2.17) 

or 

I = 4CoC letl2/T, (2.1~) 

where once again we have averaged over the standlng-wave variation of l(z) in 

going from Eqn. (2.16) to (2.17) and have made use of the boundary condition letl 

= IEFIt" at the output mirror of the cavity. The transmission function for the 

cavity is obtained by combining Eqn. (2.18) with Eqns. (2.13) and (2.4); the 

resulting expression for = is inserted into Eqn. (2.7). Expanding this equation 
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the lowest order terms in =--L, soL, and (l-R) leads to the 

2C ]2 = Yo' (2.19) 
X ° [ I + 1 + Xo ~ 

where 

RI i 
Yo ~ Is 

21 t 

X° ~s' 

(2.20) 

(2.21) 

soL 
C ~ F, (2.22) 

2~ 

and the intensities (I i, I t ) are related to the field amplitudes (ei' et) by I = 

2CoClel 2. Here F and R are given by Eqns. (2.8) and (2.12) for the empty cavity. 

Eqn. (2.19) is one of the well-known state equations of optical bistability. 

This result was first obtained by SzDke et al. (8) in 1969 and later by Bonifacio 

and Luglato (I0). The parameter C is the so-called atomic cooperativity parameter 

(8, 9, I0) and expresses the ratio of unsaturated single pass absorption SoL due 

(Eqn. (2.g)). C is to the atomic medium to single-pass cavity loss given by 

analogous to the pump parameter "a" that occurs in single-mode laser theory (5-7). 

At this point we will not discuss in any detail the properties of 

Eqn. (2.19), but instead refer the reader to an extensive theoretical literature 

(8-16, 30). Suffice it to say that Eqn. (2.19) produces a cubic equation for X o 

as a function of Yo" For C > 4, 3 real roots exist, giving rise to two possible 

stable output intensities X o for a given input Yo" This circumstance is of course 

the origin of the term "optical blstabillty". 

3. EXPERIMENT 

We have stressed in the introduction that the intent of our work is to 

realize absorptive bistability with an atomic system that as closely as possible 

approximates a collection of two-level atoms. As pointed out by Ballagh et 

al. (31) even within the restricted context of the requirement of the induced 

macroscopic dipole, the possibilities for achieving effective two-state behavior 
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are quite limited. Our strategy has been to follow the well documented work in 

single-atom resonance fluorescence demonstrating that optical pumping of alkali 

atoms and in particular of sodium can produce an effective two-level atom (32-36). 

A general schematic of the apparatus that we have constructed for our study 

is presented in Figure 2 below. The essential elements shown in the Figure are 

the multiple atomic beams of sodium and the high finesse interferometer through 

which they pass. The atomic beams are optically prepumped before entering the 

mode volume of the interferometer and in this way are prepared as two-level atoms. 

Prellminary to a discussion of the bistability that has been observed with this 

system, we will consider separately the characteristics of the intracavlty medium 

and of the optical resonator. 

The source for the sodium atomic beams is a stainless steel oven heated to 

temperatures in the range 400-600°C and containing an initial charge of 10-15 g of 

metallic sodium. A group of five square apertures each .5 x .5 mm provides 

outlets from the oven into the vacuum chamber, and two subsequent sets of .5 x .5 

mm apertures act as collimators to form the atomic beams. As previously described 

(22) this arrangement produces five parallel (primary) atomic beams and two sets 

of secondary beams. The secondary sets each contain four beams and are offset 

from the primary beams by an angle ~ = ±8 mrsd. The atomic beams pass through a 

region of uniform magnetic field of .5 Gauss parallel to the axis of the 

interferometer which is created by three sets of orthogonal current carrying 

coils. 

H'V I - - ~ - - "  - -  I00 Hz 
Puller Sine Wave 

Intensity E-O 
Stablll:otion Modulator 

),1, Monitor Beam 

Polarizer [/4 ;L 

"d ~ o o°Motchlng Detector 1 
r~ ; )p  

C ~] . ,  

i 

Dye Loser 

. . . .  
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~ - ~ [ ~  PZT Drive 
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Figure 2 Schematic of apparatus for the investigation of optical bistability. 
Multiple beams of atomic sodium pass through a high finesse optical resonator. 
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The p a r t i c u l a r  o p t i c a l  t r a n s i t i o n  t h a t  we e x c i t e  i n  t h e  sod ium beams i s  one 

o f  t h e  l i n e s  i n  t h e  h y p e r f t n e  s t r u c t u r e  of  t h e  D 2 l i n e  of  a t o m i c  sod i um,  n a m e l y  

t h e  32S1/2  , F = 2 ÷ 3 2 p 3 / 2 ,  F = 3 t r a n s i t i o n .  As i s  w e l l  known ( 3 2 - 3 6 )  

i l l u m i n a t i o n  of  t h i s  t r a n s i t i o n  w i t h  c i r c u l a r l y  p o l a r i z e d  l i g h t  c a u s e s  an  

e f f i c i e n t  m i g r a t i o n  of  p o p u l a t i o n  i n t o  t h e  m F = +2 Zeeman s t a t e  of  t h e  F = 2 

h y p e r f i n e  component  of  t h e  g r o u n d  s t a t e ,  w h e r e  ~+ t r a n s i t i o n s  a r e  a s s u m e d .  From 

t h e  m F = +2 s t a t e  t h e  o n l y  d i p o l e - a l l o w e d  t r a n s i t i o n  i n  a b s o r p t i o n  of  r a d i a t i o n  of  

t h e  same p o l a r i z a t i o n  a s  t h e  pumping  beam i s  t o  t h e  32P3/2  , F = 3, m F = +3 s t a t e ,  

w h i c h  i n  t u r n  can  d e c a y  o n l y  t o  t h e  o r i g i n a l  Zeeman g r o u n d  s t a t e .  To i l l u s t r a t e  

t h e  e f f e c t i v e n e s s  of  t h e  o p t i c a l  pumping  p r o c e s s  we show i n  F i g u r e  3 an  a b s o r p t i o n  

s c a n  w i t h o u t  and w i t h  o p t i c a l  p r e p u m p i n g .  The e x p e r i m e n t a l  s e t u p  i s  a s  i n  F i g u r e  

2 b u t  w i t h o u t  t h e  m i r r o r s  of  t h e  t n t e r f e r o m e t e r .  The s i g n a l  l a s e r  beam i s  f o c u s e d  

t h r o u g h  t h e  a t o m i c  beams s u c h  t h a t  t h e  w a i s t  s i z e  (Wo=150~m) i s  s m a l l  compared  t o  

t h e  c r o s s  s e c t i o n  of  t h e  a t o m i c  beams .  The p e a k  i n t e n s i t y  of  t h e  s i g n a l  l a s e r  

beam was  1 .4  mW/cm 2 f o r  t h e  s c a n s .  In  F i g u r e  3 ( a )  t h e  s i g n a l  l a s e r  i s  s c a n n e d  

w i t h o u t  t h e  o p t i c a l  pumping  l a s e r  beam p r e s e n t ,  and  we s e e  t h e  a b s o r p t i o n  s p e c t r u m  

f o r  t h e  32S1/2  , F = 2 ÷ 32p3/2  F = 2, 3 t r a n s i t i o n s  w i t h  t h e  m u l t i t u d e  of  Zeeman 

levels participating. In Figure 3(b) an identical scan is made but with the 

optical pumping beam present wlth a peak intensity of 25 mW/cm 2 and a FWHM of 1.6 

mm. Only a single absorption feature of FWHM = 26 MHz appears now at the position 

o. 
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Figure 3 Record of laser power transmitted through the atomic beams as a function 
o ~  frequency. (a) Without opti~al prepumpzng, two transitions within the 
hyperfine structure of Na are seen (3 $1/2, F = 2 ÷ 32p~/2 , F = 2,3). (b) With 
o~tical prepumping, one o~serves only a Dingle transiti~ corresponding to 
3~$1/~, F = 2, m~ = 2 ÷3 P3/2, F = 3, m F = 3. The scale on the left is for sweep 
(a); ~ne one on the right is for sweep (b). 
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of the F = 2 ÷ F = 3 transition. Although the atomic number density is unchanged 

in going from Figure 3(a) to 3(b), the measured resonant absorption =m %, where % 

is the propagation distance in the beams, has increased by a factor of 1.8. This 

increase is to be compared to the theoretical ratio of 2.14 obtained by comparing 

the unpumped to fully pumped absorption cross sections in the absence of 

inhomogeneous broadening. With changes in the temperature of the source oven, =m~ 

for the atomic beams can be varied in the range 0 ~ ~m % < 1.5. 

We next turn our attention to a characterization of the optical cavity, which 

was set up as shown in Figure 2. The cavity is operated near the confocal spacing 

with .25 m radius of curvature mirrors located external to the vacuum chamber and 

two intracavity antireflection-coated windows. With reference to our discussion 

of Section 2, the properties of the empty cavity are listed below. 

Cavity length L = .25 m 
Beam waist W o = 150 ~m 
Finesse F = 210 ±15 (3.1) 
Transmission T o = .018 ± .003 
Intracavity enhancement R = 18 ± 2 
Fluctuation in cavity length and hence phase 6 = 1.6 mrad (.15 MHz). 

As indicated by the lenses in Figure 2, an attempt is made to mode match to 

the cavity (37). It is however difficult to estimate the efficiency with which 

the fundamental TEMoo mode of the cavity is excited since at the confocal spacing 

some higher order transverse modes are degenerate with the longitudinal modes of 

the cavity and are not detected directly in a sweep of transmission versus phase 

6(26,37). The excitation source for all our studies is a commercial cw dye laser 

operating with Rhodamine 6G and pumped by the 5145 ~ light from an Ar + laser. The 

dye beam is stabilized in frequency to approximately .25 MHz rms relative to an 

external reference cavity, with drifts of several megahertz occuring over 

intervals of a few minutes. The laser intensity fluctuates by roughly ± 3% 

principally at acoustic frequencies. 

Given this discussion of the characteristics of the individual components of 

our apparatus, we can now imagine assembling the system shown in Figure 2 to 

undertake a study of optical bistabillty. The actual procedure followed is rather 

tedious since all measurements must be made in a single experimental run due to 

the high rate at which sodium is depleted from the oven. With the interferometer 

disassembled, adjustments of the collimating apertures are made to maximize the 

atomic flux at the position of the signal laser beam. The signal and monitor 

laser beams are brought into alignment perpendicular to the primary atomic beams 

to within ± 6 x 10 -4 rad (±1MHz). The optical pumping beam is introduced, and 

the angle of intersection with the atomic beams adjusted until the peak 

fluorescent signal from the primary atomic beams occurs at the same laser 

frequency as the peak of the signal beam absorption. We next perform several 

calibration measurements at various operating temperatures of the source oven (.3 
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~m~ ~ 1.0). As a function of laser frequency, the transmitted power of the 

signal laser beam, the optical pumping fluorescence, and the monitor beam 

absorption are simultaneously recorded. These data allow us to calculate the 

atomic absorption coefficient ~m % for the signal laser beam during the actual 

measurements of optical bistablllty from a knowledge of the optical pumping 

fluorescent signal or from the monitor beam absorption coefficient, both of which 

are recorded continuously over the course of the experimental run. 

The final step before a search for bistablllty is made is to assemble the 

Interferometer coaxial to the signal laser beam wlth the oven operated at low 

temperature and wlth an intense incident laser. With a manually tuned dc voltage 

applied to the piezoelectric transducer on which one of the cavity mirrors is 

mounted and wlth the dye laser tuned to resonance as indicated by either the 

optical pumping fluorescence or the monitor beam absorption signal, the 

temperature of the oven is slowly increased. The incident laser power to the 

cavity is slnusoldally modulated at i00 Nz (Figure 2), and the transmission 

characteristics of the cavity are displayed on and recorded from an x-y 

oscilloscope. The x-lnput is derived from a diode detecting the input power, and 

the y-lnputs are derived from a photodlode monitoring the transmitted laser power 

and a photomultipller tube onto which the intracavlty fluorescence from one of the 

atomic beams is focused. 

As the intracavlty density of the atomic beams increases, the transmission 

characteristics evolve qualitatively as predicted from the plane-wave theory of 

Section 2, Eqn. (2.19). Examples from our data are shown In Figure 4, with Figure 

4(a) illustrating the general format of the photographs. Below some critical 

value of atomic cooperatlvlty, bistablllty is not observed but rather a region of 

F l u o r e s c e n c ~  i J ' > 

PI P2 ~' 
(o) (b) 

(c) (d) 

Figure 4 Photographs of the output power P, and intracavity fluorescence I F as 
functions of incident power Pi" The general format for the photographs is-given 
in (a). (b)-(d) are records made for increasing effective cooperativity parameter 
C e equal to 22, 32, and 49, respectively. 
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large differential slope separates the transmission characteristics into low and 

high transmission regions. At higher densities a definite hysteresis emerges in 

both the transmitted power and the intracavlty fluorescence as functions of 

incident laser power. The growth of the hysteresis with increasing =m % is 

illustrated in Figure 4(b)-(d). In Figure 4 and for the other measurements that 

we report the conditions appropriate to absorptive bistability were approximately 

met in the following fashion. First the laser was tuned to the atomic resonance 

as previously described. Next the cavity detnning was set to zero by varying the 

length of the cavity until the transmission of the cavity in the limit of large 

input intensities (several times the switching intensities) was a maximum. 

From a large number of photographs such as shown in Figure 4 we have 

determined the dependence of the switching powers P1 (upper to lower branch) and 

P2 (lower to upper branch) on the resonant atomic absorption ~m %. Figures 5 and 6 

display our data and show the actual incident switching powers (Pl' P2 ) and the 

ratio of these powers S E P2/PI as functions of atomic cooperativity. For each 

set (P2' P1 ) a value of the cooperativity parameter has been calculated from 

Eqn. (2.22) using, in place of ~o % the value of ~m ~ determined from the record of 

monitor beam absorption and optical pumping fluorescence, and the cavity finesse 

F . We label this Ce, denoting an effective cooperativlty parameter. As we shall 

see in the next section, the theory is generally expressed in terms of the number 

density and not the actual on resonance absorption =m ~. In the absence of any 

broadening mechanism other than radiative relaxation, there is no distinction 

d- 

1" 
2 '  . ~ C  

.+ + "  
r 

.' , ~ . : ,  " 

. .  ~7_r i 

COOPERATtVITY, Ce 

Figure 5 Switchingpowers (P1,P~)~ as shown in Figure 4 as a function of cooperativity 
parameter C . Relative uncertainties are indicated by error bars at several points 

e , . + . . . " 

Overa~ the scale for C e ~s uncertain by -15%. The full curve ~s the predtctton of 
the plane wave theory of Eqn. (2.19) for the turning points as discussed ~n the text. 
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Figure 6 Ratio of switching powers S -P2/P1 = Y2/Y1 as a function of cooperativity 
C e. Relative and absolute uncertainties are discussed in the text. The full 
curve i s  the theore t ica l  r e su l t  obtained from Eqn. (2.1,9). 

between the two points of view. However in our case the atoms are spread across 

an inhomogenous line profile. 

As indicated by the horizontal error bar at C e = 30 in Figure 5, the overall 

uncertainty for the scale of the data set as a whole is ±15%, and arises from the 

lack of precision to which F and ~m% are known. Apart from the question of 

scaling, the relative uncertainty of points within the data set is shown by the 

smaller horizontal error bars. Likewise relative uncertainties of the incident 

switchin~ powers are indicated by the vertical error bars. The absolute switching 

powers are obtained from a calibration of the photodiode input relative to two 

different and independently NBS traceable power meters and are accurate to ±5%. 

In Figure 5 a single point at a given value of C e corresponds to the power at 

which the maximum differential slope is obtained in the input-output 

characteristic. 

We present the data of Figure 5 in a different format in Figure 6 to more 

clearly illustrate the dependence of the onset and growth of the hysteresis cycle 

as a function of C e. The ratio S ~ P2/PI is set to one for operating conditions 

in which no hysteresis can be detected; S > 1 corresponds to a clearly defined 

hysteresis cycle. The error bar at C e = 30 again represents the overall 

uncertainty in the determination of C e. 

It should be stressed that our data represent a good approximation to the 

steady-state regime in optical blstahillty. The time taken to sweep up and down 

in intensity (i0 msec) is large compared to either the cavity decay time r "-I 

2 L F (= 1.1 x I0-7s) or to the atomic lifetime (16 nsec). As we shall see in the 
~ C  

next section the simple theory of Section 2 makes only a qualitative accounting of 

the various effects in the observed steady state characteristics. A quantitative 

understanding requires a considerably more advanced analysis. To illustrate this 

point we have included in Figures 5 and 6 a full curve derived from the state 
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equation (2.19). To scale Yo of that equation to an actual incident power Pi' we 

rather arbitrarily associate the incident intensity I i with .75 times the peak 

intensity of the Gausslan beam at the center of the interferometer. That is, 

3 Pl 3 Pl R 
I i = or Yo = (3.1) 

2~Wo2 2~Wo 2 I s 

We also for the moment ignore the distinction between C and C . Note that C as 
e e 

defined above effectively accounts for the fact that the atoms are distributed over 

an inhomogeneous profile (52), whereas C does not. 

~. THEORY 

As is evident from Figures 5 and 6 for our experiments on steady-state 

optical blstabillty, there are quantitative departures from plane-wave theory for 

a homogeneously broadened medium. For example, from Fig. 6 one sees that the 

critical cooperatlvlty for optical blstability is not at C = 4 as in a homogeneous 

plane- wave theory, but at C = 14. Likewise the calculated plane-wave intensities 

for the switching points are much less than those observed, as shown in Fig. 5. 

These quantitative departures are due to several factors which are omitted in 

the simple homogeneous plane-wave theory of optical blstabillty, relative to our 

experiment. One obvious difference is that the experiments do not involve a 

homogeneously broadened atomic transition, and inhomogeneous broadening tends to 

reduce the extent of blstabillty. In addition, we shall see that the departures 

show the quantitative importance of the transverse mode structure for the 

Interferometer, which in these experiments is the set of Gausslan radially varying 

modes of a Fabry-Pernt Interferometer. 

Motivated by these comments we will in this section work out a theory for the 

case of a Causslan mode, which extends previous work in this area of blstabillty. 

In general such a calculation would require the solution of cyllndrlcally 

symmetric Maxwell-Bloch equations to allow for the large changes possible during 

propagation (29,40,41). However except at the highest C-values of Figures 5 and 6 

the complexity of the full theory can be safely reduced. For this reason 

propagation effects will be neglected, and a single Gaussian-mode theory will be 

used (9,38,39). 

As for the question of the validity of a steady-state description, we note 

that there are theoretical predictions relating to plane-wave instabilities in 

which coupling to other longitudinal modes occurs (42). While these effects are 

not included in the current theory, they cannot be entirely ruled out at the 

highest intensities and C values reached, where the ac Stark effect causes a 
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frequency splitting comparable to the longitudinal mode spacing of the 25-cm 

standing-wave interferometer. 

In addition to these instabilities, Ikeda has predicted the existence of 

instabilities in the theory of nonlinear plane-wave interferometers in the 

dispersive limit (43,44). One of these occurs for an interferometer round-trlp 

time (~R) relatively long compared to the atomic relaxation time T 1 (43). This is 

not relevant in the current experiments where ~R = 1.7 nsec, T 1 = 16 nsec, and 

where the nonlinearity is purely absorptive. Ikeda has also predicted (44) 

instabilities for small ~R' and with T 1 comparable to the interferometer 

relaxation time (K'-I). While the dispersive limit used by Ikeda is not 

applicable here, it is true that the coupled atom-fleld equations have complex 

stability properties when K'T 1 ~ I. The simplest case of plane-wave absorptive 

bistability is analyzed in detail in Ref. (46) where it is shown that for all 

values of the relaxation rates (K', T1 l, Ti ) the positive slope braches of the 

state equation are stable, and the negative slope branches are unstable, provided 

the interferometer mode spacing is large enough. To proceed further, we suppose 

that these stability properties hold even in the general case of inhomogeneous 

broadening and Gaussian mode structure in absorptive blstability. This is known 

to be true rigorously (47) in the limit K' << TI , Tll, for single-mode 

Hamiltonlans, although the exact structure of the final state equation becomes 

radically modified. 

The question of transverse mode coupling will not be addressed here in 

detail, since the higher order transverse modes are implicitly treated as a 

reservoir in our theory. That is, the effective polarization of the nonlinear 

medium will be integrated over the zeroth order (TEMoo) mode. It is reasonably 

clear that due to nonlinearities there must be an excitation of higher order 

transverse modes, since the induced polarization is not identical in radial 

structure to the initial mode. The approximation that we adopt is that higher 

order modes which become excited experience strong relaxation via absorption by 

atoms outside the waist of the principal TEMoo mode (40). 

The theory that we present attempts to include those factors that have a 

dominant effect on the calculation of switching powers. Specifically, we 

include: (I) Gaussian-mode radial intensity variations, (2) corrections for 

standing waves in a Fabry-Perot, (3) inhomogeneous broadening, (4) atomic 

longitudinal velocities (along the interferometer axis), (5) atomic transverse 

velocities (perpendicular to the interferometer axis). The Hamiltonian that we 

employ is the standard one used in studies of optical blstability, except that a 

time-dependent position and a nonplanar mode structure have to be included: 

H = HFiel d + HAtom + Hlnteractio n 
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] 

+ ll~[¢(t)a+e -Ic0t - ¢*(t)a e Ic0t] + {RESERVOIRS}. (4.1) 

The reservoirs describe radiative and collisional relaxation, leading to 

relaxation rates of K', ¥i' YN for the interferometer mode, atomic polarization 

and atomic inversion, respectively. The interferometer mode creation and 

annihilation operators are ~+, a, while the atomic raising, lowering and inversion 

~ ^- ^z (for the j - th  atom). operators are the Pauli operators , oj, oj 

The frequencies (in radian/sec) of the interferometer mode and the individual 

atomic transitions are mo' ma' respectively. The input field is proportional to 

¢(t)e-imt; that is, it has a frequency of ~, and ¢(t) has units of sec -I. The 

dipole coupling is gj, which is defined in terms of the Einstein A-coefficlent for 

the relevant transition, and the electromagnetic field mode. Each atom itself has 

certain velocity ~j and a position ~] at t = O, distributed so that there are a 

always D atoms per unit area orthogonal to z. The coupling coefficient is 

therefore given by: 

gj(t) = [3=?IIC3] I12 lu(~j(t))l ~ ~lu(~j(t)l 
2m 2 

(4.2) 

wl th 

"~j(t) ffi ~oj + ~jt ffi (x°j + yOj + zOj) + (vXj + vYj + vj)t, 

and where 

lu (~) l  = ( 4 )1/2 cos (2~zl -c ((x 2 + y2)/w ) 

Here u(~) is simply the mode function of the electric field ~ near the center of a 

Fabry-Perot interferometer, neglecting the longitudinal variation in the mode 

radius. The interferometer length is L, with a mode waist of W o. 

In order to include quantum fluctuatlons~ it would be necessary to treat 

Eqn. (4.1) using a Eokker-Planck approach (47). However, this is not required at 
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present. Instead, the approximate semiclasslcal equations of motion will be 

derived in which the quantum fluctuations are regarded as negligible. This 

approach can be Justified as an expansion of the Fokker-Planck equation in powers 

of (~) for N atoms, in which the higher order derivatives are dropped, as they 

involve higher order terms in (~). The resulting characteristics that solve the 

reduced Fokker-Planck equation are identical to the semlclasslcal equations 

including relaxation. By defining 

~(t) = <aei~Ot>, ~(t) = <O~ e¥1~ot>, o~(t) = <o~> 

we obtain for the case m = ~a (laser tuned to line center), 

~a 

St  

~---~ = gj(t) ~ - ~i~7, st 
(4.3) 

~t  

where K = K' + i(~ o - ~) = ~" (I + i~). 

While Eqn. (4.3) can include stationary inhomogeneous broadening, this type 

of broadening (which does occur in non-Doppler-broadened media) is not relevant to 

the atomlc-beam Fabry-Perot interferometer, as the atomic Doppler shifts do not 

define a unique frequency. The reason for this is simple: an atom with a 

velocity component in the z-dlrectlon experiences both blue and red frequency 

shifts relative to the two counter-propagating directions of laser propagation in 

the interferometer. Hence it is not possible, except in the case of a ring 

interferometer, to treat the problem of Inhomogeneous broadening as originating 

from a range of effective resonance frequencies. 

For long enough transit times of the atoms through the mode volume, only the 

longitudinal or z-veloclty component is relevant, with z along the interferometer 

axis. Each atom can then be identified by its longitudinal velocity vj and by its 
2 2 I/2 radial coordinate r = (x. + y ) . Of course, the radial coordinates change 

J IJ i j 
slowly; however provided Y~ , V~ are very much less than the beam transit time, 

tp, this effect can be ignored in a first approximation. The driving field 

experienced by atoms with velocity vj is modulated at a frequency of Q(vj) = 
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2~vj/k. If we define A E Q(vj)/Yi, then the velocity distribution corresponds to 

a frequency distribution P(A) defined so that fP(A)d(A) = I. 

The modulation of the field seen by the atoms implies that steady-state 

behavior does not occur for o ± and z, and instead we look for periodic solutions 

to Eqn. (4.3) of the form: 

O~ E O-(vj,rj) = ~ Jn(vj,rj)einQ(vJ)~ 

O~ E oZ(vj,rj) = ~ Dn(Vj,rj)einQ(vj)~ 

(n is odd) 

(n is even) (4.4) 

o with ~ = t + zj/Vj and with gj(t), ~(t) defined in Eqns. (4.2), (4.3) by 

gj(t) E g(rj) cos (Q(vj)~) and e(t) ~ e = constant. (4.5) 

Solutions of this type were first studied in the theory of the well-known Lamb dip 

effect, often used in laser frequency stabilization (4R-51). This theory was also 

used recently in optical bistability for the case of a plane wave mode (52). In 

the current problem it is necessary to combine both Caussian mode theory, without 

a perturbatlve treatment, and the periodic atomic solutions of the type in 

Eq. (4.4). 

Combining Eqns. (4.3) and (4.4), and omitting the (vj,rj) arguments for ease 

of notation, we obtain for any one atom in the beam, 

einQ~ ~-~ ~ Jn = ~ [ga cos (Q~) D n - yiJn]elnQ~ 

D-~ ~ DneinQ% = -~ [2g cos (Q%) [J*n = + Jn =*] + YH [Dn + 6n,o ]]einQ~, (4.6) 
n n 

where 6n, o is the Kronecker delta function. Hence 

Jn = g=[Dn-I + Dn+l]/[2(Yi + inQ)], 

Dn = {-g[=(J~n+l + J~n-I ) + =*(Jn+l + Jn-I )] - Y115n,o}/(Yll + inQ), 

DnA n + X r [Dn+ 2 an+ 1 + Dn_ 2 an_l] + 6n, o = 0. (4.F) 

In Eqn. (4.7) the following standard notation (52) is used in order to simplify 

the recursion relations that define the Fourier component solutions: 
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Xr m g(rj )2 I =12 / [viv,], A~ ~ i + i~/v, + X[an+ i + an_i] , 

~ [~ + i~] -i, a n ~ [L n + L_$]12. (4.s) 

Clearly D n has a straightforward three-term recursion relation. The solution 

is very well known from laser theory, and will be reproduced here without further 

analysis (48-52). We note that only Jl' J-I will be necessary to the final 

results, and these quantities can in turn be written down using only the values of 

D o and D 2 (since D_n 5 D~, as the total inversion has zero imaginary part). The 

solutions for these equations are: 

J±i(vj,rj) = g=[Do(vj,r j) + Di2(vj,rj)]/[2(yi ± iO)] 

Do(Vj,rj) = -I/[i + S(vj,rj)] 

D2(vj,r j) = -XrFDo(vj,r j) (4.9) 

where: 

2 Re [F(L 1 + S(vj,rj) = (ILl 12 + IL_112) X r - X r L~I) ], 

a I a 2 a 2 
F = {i~/ [i - x2f 3 r,A--V? / [ 1 - ~. q-~-As6) / . . . .  ~. 

The arguments of the functions Q, X r, F, an, A n are all omitted for ease of 

notation, although these are functions of (vj,rj). Given Eqn. (4.9), the result 

of calculating the lowest order Fourier components J±l(vj,rj) depends only on the 

continued fraction F, which must in general be evaluated numerically. 

With the above results we can now compute the source term in equation (4.3) 

for the field. This can he calculated in the steady state on taking into account 

only the non-oscillating components of the source term ~gj(t)~;(t). Oscillating 

terms in this sum will be averaged to zero for sufficiently many interacting 

atoms, since every atom has a random relative arrival time (z~/vj). This implies 

that at any time the atoms are distributed randomly and relatively uniformly along 

the length of the interaction volume. The resulting state equation for 

on-resonance excitation is (noting that e has units of sec -I) 
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+ J_1(vj,rj)]. (4.1o) 

For a continuous velocity distribution and a large number of atoms, we 

replace the summation in Eqn. (4.10) by an integral over velocity and radius, 

given the distribution P(A) defined earlier and the atomic density for a medium of 

infinite transverse extent. The resulting equation is best expressed in terms of 

the cooperatlvity parameter C, and reduced variables X, Y, similar to those 

defined in Section 2. While C can be unambiguously defined, the definitions of X, 

Y in the case of Gaussian modes are dependent on the normalization. Here we 

choose a normalization or scaling that has the property of producing a unified 

dispersive limit for the state equation (3B). Hence we define 

c= ~g-a 
2LK 'yl' 

x - I=12 1 n o 

Y - IE 12 / [~ ,2  n o ] ,  

and n o = (2~LW2)[yiyl,/(4g-'2)) 
j o 

( 4 . 1 1 )  

with D as the number of atoms per unit cross-sectlonal area interacting 

mode. These definitions together with Eqn. (4.10) give 

Y = xll + i~ + 2C f P(A)x(A,X)dAI 2 

with the 

(4.12) 

where, for symmetric distributions (P(A) = P(-A)), 

1 - XrF(Xr,A). e-RdR 

x(A,x) = f { i + S(Xr,~) ~ 7-7-~' 

x r = Xe (4 .13 )  
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Equation (4.12) is the central result of this theoretical section. We note 

that in general the procedure of evaluating the state equation is a numerical one, 

requiring first evaluation of the continued fraction F, and then integration over 

A and R. This then has to be repeated for a large number of X values to obtain the 

state equation at a given C. Finally, the value of C is varied in order to model 

the variation in the atomic absorption that occurs over the course of the 

experiments described in Section 3. 

In addition to the above calculation, we have performed several others to 

determine the validity of the approximations used in deriving Eqn. (4.12). These 

include checks on the effect of beam transit time, which requires a numerical 

integration of Eqn. (4.3) during typical atomic trajectories through the 

interferometer mode, together with integrals over the offset radius of the 

trajectory from mode center and over the standing waves. For typical velocities 

of = I000 ms -I, with a mode waist of 150 ~m, the corrections to the switching 

intensities are of order ±5%. Corrections of similar order of magnitude are found 

by including the finite atomic beam cross-section (of 500 ~m), and by 

approximately including the effect of absorption at large C-values. Since these 

corrections are less than the measured uncertainties in C, X, Y, we will not 

include them in our final calculation of the state equation. 

5. COMPARISON OF THEORY AND EXPERIMENT 

In order to compare theory and experiment, the first step is to identify the 

relation between the theoretical quantities C, X, Y and the observed quantities 

Ce' Pt' Pi' where C e is the effective cooperativity defined as the resonant atomic 

absorption times the cavity finesse divided by 2~, and Pi' Pt are the incident and 

transmitted powers, respectively. We note that C e would be identical to C as 

defined in Eqn. (4.11) provided there was no Inhomogeneous broadening. However 

for a finite inhomogeneous width, one has the relation 

C e = C f P(A)dA 
I + A 2" (5.1) 

In the experiment, P(A) is in fact a rather compllcated distribution 

involving a central peak with broadened non-resonant additional peaks due to 

imperfect beam collimation. This is simply modelled as a Gaussian, 

I P(A) = ~ exp r ~ [_A2/2 2j. (5.2) 
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In Eqn. (5.2) the Gaussian standard deviation (~) is obtained by fitting the 

calculated absorption profile derived from Eqn. (5.2) to the actual measured 

absorption profile as shown in Figure 3(b). Some modifications to a Gaussian 

distribution were also tried, but only minor changes were found in the 

characteristics of the state equation. 

In order to relate the variables (X,Y) of Eqn. (4.11) to the measured output 

and input powers (Pt' Pi ), we note that ~" is the decay constant for the empty 

cavity tuned to resonance (Eqn. (4.3)), and hence can be conveniently expressed 

using the notation of Section 2, 

This equation together with the boundary conditions at the mirrors of the cavity 

allow us to relate X to Pt" Likewise, noting that X = Y for the empty tuned 

cavity (Eqn. (4.12)), and that Pi and Pt are related in this same case through 

Eqn. (2.12), we can express Y in terms of Pi" Summarizing these results, we have 

C = Ce/f P(A)dA ~°~ P, 
1 + A 2 2= 

(a) 

3 PiR 
(5.3)(b)  

3P t 
X - 2 ' 

~Wols T 

(c) 

with F, R, T, and I s as defined in Section 2, with W o as the beam waist at the 

center of the cavity, and with A as the length of the absorber. As well we have 

assumed purely radiative relaxation (2y± = Vii) for our two-level system. The 

effective cooperativlty parameter C e is given in terms of the measured resonant 

absorption coefficient ~m and the cavity finesse F as 

Ce = 2= F. (5.4) 

Cast in this form the theory is directly comparable to our experiment since 
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all quantities that appear in Eqn. (5.3) are measured directly. Using Eqn. (5.3) 

we can rescale our data of Figure 5 to obtain dimensionless switching intensities 

(YI' Y2 ) as a function of C e. Figure 7 shows our data plotted in this way. Note 

that because the quantities that relate Pi to Y (Eqn. 5.3(b)) are not known to 

high precision (Eqn. (3.1)) and since we do not know the absolute efficiency of 

the excitation of the TEMoo mode of the cavity, the transformation from the set 

(pI,P2) to the set (YI' Y2 ) involves an overall uncertainty in scale. We estimate 

this uncertainty to be ±30% and indicate this together with the uncertainty in the 

scale of C e (±15%). 

The dashed curve shown in Figure 7 is the theoretical result obtained from 

Eqn. (4.12) for an atomic absorption profile of 30 MHz FWHN (Eqn. 5.2) and for ~ = 

O. No adjustment of either the data or the theory has been made. The figure thus 

represents an absolute comparison between theory and experiment. We see rather 

good agreement in the region below and around the threshold for bistabillty for 

the absolute values of the switching intensities. However at higher C e values 

substantial discrepancies appear. We can attempt to remedy this by rescaling the 

experimental intensities, since there are overall uncertainties in the experiment. 

The full curve in Figure 7 is the result of such a procedure, showing a greatly 

improved fit at higher values of C e, but at the expense of agreement at low C e. 

(For convenience, we have scaled the theory up rather than replot the data scaled 

down by 30%). 

A similar analysis has been followed in Figure 8 where we reproduce Figure 6. 

~. ~ 1~f~ 

~o ~o 3o 4o ~o 
COOPERATIVITY, Ce 

Figure 7 Experimental switching intensities (Y1, Y2 ) as determined frcm (P1, P2 ) of 
Figure 5 and from Eqn. 5.3 (b) plotted as functions of the effective cooperativity 
parameter C e. The dashed curve is the result of Eqn. (4.12) without adjustment. 
The full curve represents an adjustment within the experimental uncertainties. 

2~ 
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Figure 8 As in Figure 6 with the dashed curve derived from Eqn. (4.12). 

Since the ratio S = P2/PI = Y2/YI is independent of absolute calibration, we are 

able to compare more readily the experimental and theoretical results for the 

evolution of the hysteresis as a function of C e. The dashed curve corresponds to 

the dashed curve of Figure 7, without adjustment of theory or experiment. There 

is quite clearly a discrepancy between theory and experiment, with the theory 

predicting a lower value of C e for the critical onset of blstabillty and larger 

ratios S for a given C e than was observed. A possible explanation for this 

difference is the presence of intensity and frequency fluctuations in the driving 

laser and fluctuations in the phase ~ of the cavity. These "noise" sources would 

tend to reduce the size of the hysteresis cycle and shift upward the critical 

onset of bistabillty. As well, systematic errors may exist in our calibration 

procedures. 

In our concluding remarks it is perhaps worthwhile to return to the point of 

view expressed in the introduction. Optical blstabillty is quite a general 

phenomenon occurring in diverse physical systems. A qualitative picture of either 

absorptive or dispersive bistabillty can be obtained from a simple theory such as 

that presented in Section 2. However, a detailed quantitative understanding 

requires a considerably more vigorous theoretical and experimental effort. While 

the results that we have presented here represent one of the most careful analyses 

of optical blstabillty yet performed, we view them as only a preliminary 

assessment of both the experimental procedures and the theoretical model. Such a 

study of the steady state is a necessary first step toward a microscopic 

understanding of even more complex dynamical processes in optical bistabillty. We 

view it as encouraging that a microscopic model can represent our results 

reasonably well without requiring ad-hoc fitting parameters of any kind. 

This work was supported in part by the Joint Services Electronics Program and 

by the Robert A. Welch Foundation. The research of one of us (P.D.D.) was 

supported in part by the U.S. Office of Naval Research. 
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OPTICAL BISTABILITY AND NON ABSORPTION RESONANCE 

IN ATOMIC SODIUM 
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l.O Introduction 

While the performing of theoretical calculations on models of intr insic optical 

b is tab i l i ty  has been very popular and highly productive over recent years, the number 

of experiments in the same f ie ld has been surprisingly few. This art ic le is concerned 

with the experiments carried out in our laboratory in which an atomic sodium vapour 

inside an optical cavity serves as the system under investigation. F i rs t ly ,  the 

apparatus is described followed by the results from what were original ly envisaged as 

preliminary experiments but which became a major study. Sections 4 and 5 deal with 

attempts to model the system and compute the resultant theory. 

2.0 The Experiment 

For the detection of b is tab i l i t y ,  the technique of sweeping the laser frequency and 

searching for distortions in the optical cavity transmission peaks as employed by Sandle 

and Gallagher I l l  was used. However, the experiment conditions were different from 

theirs. To generate a psuedo two-level system in the DI transition, they employed 

confocal mirrors of high re f lec t iv i ty  in a Fabry-Perot etalon to obtain a high cavity 

f ie ld for large power broadening. As well, they added Argon as a buffer to make the 

homogeneous width the same order of magnitude as the inhomogeneous width. We have 

employed neither of these techniques. Our system has incorporated f l a t  mirrors in a 
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low finesse opt ical  cavi ty and pure sodium vapour. Thus we have essent ia l ly  the same 

condi t ions  as used by Gibbs e t  al [2] who s tud ied  the b i s t a b i l i t y  by c y c l i c a l l y  varying 

the injected f i e l d  in tens i ty  when tuned to near resonance with e i ther  of the D l ines. 

r . . . . . . . . . . . .  
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Fiq. 1 Experiment Configuration. 

The layout of the apparatus is shown in Fig. I .  The Fabry-Perot mirrors were 93% 

re f lec t ing  and f l a t  to ~/I00. One mirror was set in a PZT a l igner / t rans la to r  that was 

driven by a high voltage supply. This allowed both the cavity length to be varied and 

f ine adjustments to the mirror alignment to be made. As wel l ,  both mirror assemblies 

were mounted in star gymbol mounts which allowed coarse adjustments about the horizontal 

and ver t ica l  axes. 

The glass vapour cel l  was made with re-entrant windows. The distance between the 

windows was 2.5 cm. The re-entrant design enabled a more uniform temperature of the 

vapour to be obtained in the in teract ion region. The cel l  was heated via lagged nicrome 

wire. Thermo-couples attached to the cel l  monitored the temperature which, for  the data 

reported here, lay in the range of 140°C to 200°C. 

Under operating conditions with the injected l i gh t  detuned from resonance, the vapour 

cel l /Fabry-Perot system had a free spectral range of 970 MHz and a finesse of 9. A r ing 

cavi ty was formed by adding a th i rd  mirror which was 100% re f lec t ing .  A small range 

cavi ty scan could be achieved by t ranslat ing this mirror with a piezo dr ive. The 

modif ications for  the r ing cavi ty are i l l u s t r a ted  by the dashed l ines in Fig. I .  This 

r ing cavi ty had a finesse of 9 and a free spectral range of 700 MHz. 
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The l i g h t  source was a Spectra-physics 380A r ing dye laser pumped a l l  l ines by a 164 Ar + 

laser. The j i t t e r  bandwidth of th is  system was less the I0 MHz. The s t a b i l i t y  of the 

single-mode output was monitored by a h igh-f iness opt ical  spectrum analyser. 200 mW 

was the maximum l i g h t  i n tens i t y  that could be in jected in to  the opt ical  cav i t ies .  The 

d i rec t ion of po lar isat ion for the f i e l d  in jected in to  the r ing cavi ty  had to be care- 

f u l l y  set perpendicular to the plane of the r ing so that more i n t r a - cav i t y  modes were 

not generated by repolar isat ion due to re f l ec t i on  at the mirrors. For the Fabry-Perot 

etalon, e i ther  l i nea r l y  or c i r c u l a r l y  polarised l i g h t  was used and the cav i ty  was 

op t i ca l l y  isolated from the laser to prevent re t ro - re f lec t ions  entering the laser.  

For c i r c u l a r l y  polarised l i g h t  a combination of a l i near  po lar iser  and a quarter-wave 

plate was used as the i so la to r  whi le for  l i n e a r l y  polarised l i g h t ,  a Faraday ro tator  

replaced the quarter-wave plate.  

Af ter  the i so la to r ,  a coll imated beam of I /e  width var iable between 0.5 and 2.0 mm was 

formed using a simple telescope arrangement. The beam e lec t r i c  f i e l d  p ro f i l e  was 

approximately Gaussian and so the f i e l d  of view of the detector was res t r i c ted  to the 

centre of the transmitted beam so that the data was obtained from an essent ia l l y  uniform 

f i e l d  region. This was accomplished by using a short-focus lens to project a magnified 

image of the transmitted beam onto a 0.5 mm diameter pinhole in f ron t  of the photo- 

m u l t i p l i e r  tube. The output of the tube was fed to the Y-ampl i f ier  of a storage o x c i l -  

loscope. 

The symmetric ramp voltage from a sweep generator was used to c y c l i c a l l y  change the 

frequency of the dye laser. The voltage was imposed on the various cavi ty  and etalon 

t ranslators of the laser via the Spectra-physics 481B Scanner. The same ramp was also 

fed to the osci l loscope X-ampl i f ier  so that  a picture of system transmission versus 

laser frequency could be obtained for  the ent i re  sweep. When only a sweep in one 

d i rect ion was required, the Z-input blanking f a c i l i t y  of the osci l loscope could be used. 

The synchronous output of the sweep generator was fed to a gate generator where i t  was 

shaped and delayed before being fed to the Z- input.  

Data recording consisted of photographing the stored trace. 

3.0 Data 

Recorded opt ical  b i s t a b i l i t y  in the rad ia t ion transmitted through the cav i t ies  is shown 

in Fig. 2. 
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Bistable transmission prof i les  for a) the Fabry-Perot etalon and b) the ring 
optical cavi ty.  

Fig 2 (a) contains data from the Fabry-Perot with the injected radiat ion frequency 

swept about the D2 t rans i t ion .  The sol id l ine is for  a sweep to lower frequency while 

the dashed is to higher frequency. The radiat ion was l i nea r l y  polarised and the in t ra-  

cavi ty  f i e l d  in tens i ty  is estimated at 50 mW/mm 2 at the centre of the p ro f i l e .  Bista- 

b i l i t y  is indicated both by the d is tor t ion of the peaks and the hysteresis in the peak 

height and posit ion. The frequency at which switching between the transmission branches 

occurs depends on the direct ion of the sweep i . e .  whether i t  is towards l ine centre or 

away from i t .  This e f fect  is most c lear ly  seen in the peak near the centre, Instru-  

mental hysteresis has been removed. 

Fig 2 (b) i l l us t ra tes  the bistable behaviour of the ring cavi ty for the DI t rans i t ion ,  

The in tens i ty  density at the centre of the beam in the cavi ty was estimated at I00 

mW/mm 2. The peak distor t ions and the hysteresis are again apparent. The shape of the 

peaks and the asymmetric nature of the data also indicate that the ef fect  is dispersive, 

The dependence of the switching threshold on the di rect ion of the sweep with respect 

to l ine centre is even more c lear ly  i l l u s t ra ted  here. Again, the instrumental hyste- 

resis has been removed. To our knowledge, this is the f i r s t  observation of b i s t a b i l i t y  

in a ring cavi ty.  
a) 

LASER FREQUENCY 

Fig. 3 

b) 

LASER FREQUENCY 
Transmission of the cavi t ies at lower temperatures a) Fabry-Perot b) r ing. 
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Fig. 3 (a) shows the transmission of the Fabry-Perot at lower temperature, As the 

intensity of the injected f ie ld  was increased from a low value, an enhanced absorption 

dip would appear in the transmission peak situated at a fixed frequency in the Doppler 

prof i le. At higher intensit ies the narrow enhanced transmission feature became appa- 

rent. This feature broadened with further increase in intensity. This data is for the 

D2 transit ion and the intensity density of the intracavity beam centre is lO0 mW/mm 2. 

The injected f ie ld  was l inear ly polarised. 

The transmission of the ring cavity was observed under similar conditions and the 

results are given in Fig. 3 (b). The intensity density was 85 mW/mm 2. No evidence 

of enhanced absorption or transmission features was observed although there was sa tu -  

ration at the centre of the absorption prof i le.  

The data presented in this section forms the basis of a manuscript recently submitted 

[3]. 

4.0 The Model 

Our interpretation of the narrow, enhanced transmission peak in the Fabry-Perot is 

that i t  is a nonabsorption resonance phenomenon of the type observed by Alzetta and 

co-workers [4] and analysed by Oriols [5]. In their case, they had a co-propagating 

beam consisting of different spatial modes from a free-running laser. Here, we have 

counter-propagating beams of the same mode. For the typical intracavity f ields used 

in this experiment, the sodium transitions can be modelled as three-level systems of 

the "lambda" type, that is,  one excited level and two ground levels [6]. The two 

transition frequencies d i f fer  by 1772 MHz. The dipole moments of the optical transi- 

tions are taken to be equal, i .e .  

and the two ground states are not coupled, 

~12 = O. 

The accuracy of the three-level model can be i l lustrated by performing a saturated 

absorption experiment. A small fraction (~ 5%) of the laser beam is sp l i t  of f  and 

sent through the vapour cell in the opposite direction to the main beam, 
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Fi 9. 4 

a) b) 

FREQUENCY FREQUENCY 

Absorption of the probe beam a) D2 b) DI. 

Fig. 4 (a) shows the absorption versus frequency of the probe beam for the D2 line. 

When the laser is tuned to either of the transitions, there is an enhanced transmission 

Lamb dip due to each beam interacting with the zero velocity group, In the centre is 

an enhanced absorption of the probe beam called a "cross-over resonance" [7], This 

results from the velocity group that Doppler shifts the pump beam fnto resonance with 

one transition and the probe beam into resonance with the other, The transverse optical 

pumping effect of the strong beam creates a greater than equilibrium population in the 

ground state of the transition associated with the probe beam, and so i t  is more heavily 

absorbed. Note that there is no evidence of the excited state hyperflne structure. 

Fig 4 (b) is of data for the Dz transition. Notice now that the excited state hyperfine 

structure is evident at this pump power, so that a three-level model is not as good an 

approximation for the D~ transition. However, essentially the same arguments apply, 

Using a three-level model, the enhanced transmission feature in the Fabry-Perot data 

can be explained, Unlike in the saturated absorption experiment, the counter-propaga- 

ting beams i,n the cavity are both strong (!to a f i r s t  approximation they are equal). 

For that velocity group that has one beam in resonance with one transition and the 

other in resonance with the second transition, the transverse optical pumping at strong 

fields wi l l  create superposition states of the ground states i,e~ ~ ( l l>  + 12 > ) and 

~ ( l ! >  - ]2>). The excited state has equal probability of relaxing to either state 

but the second state has a zero excitation amplitude to the excited state. Hence al l  

of the atoms of this velocity group wi l l  be trapped in the state ~ (II> - 12 >) and 

there wi l l  be no absorption of the f ields, We claim that this non-absorption resonance 

is responsible for the narrow enhanced transmission feature in the Fabry-Perot data, 

No such effect is observed in the ring because there are no counter-propagating beams. 
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5.0 Theory 

a) Fabry-Perot etalon. 

The development of even a simple model to describe an ensemble of inhomogeneously 
broadened three-level atoms in the steady state inside a Fabry-Perot etalon has yet 
to be attained. The atomic behaviour is described by the density matrix equation 

i T~ ~ = [H,p] + relaxation terms 

where p is the density matrix which has dimension 3 and the square brackets are com- 

mutator brackets. 

H = H 0 + Hin t 

where H 0 is the unperturbed atom Hamiltonian i .e ,  

and Hin t represents the interaction between the atom and the classical f ie ld  

Hint = ~ 0 0  O0 -~*(t)-~*(t)~ 

k-~(t) -~(t) 0 

where ~(t) = ~. (Ef(t) + Eb(t)) ; 

I~ being the transi t ion dipole. The subscripts are for forward and backward waves. 

The time dependence can be extracted as 

~{t) = ~[e i(mt-kz) + c.c. + e i(mt+kz) + c.c. ]  

where ~ = ~.E~ 

- T  

is the Rabi frequency which measures the strength of interaction between the induced 

dipole moment of the transitions and the injected f ie ld .  I f  l inear  polarisat ion is 

used, the Rabi frequency is a real scalar, 

= wE -~, 

The procedure is to solve the equations for the density matrix elements by choosing an 
appropriate output f ie ld .  The relevant density matrix elements integrated over the 
Doppler prof i le  plus the f ie ld  are then substituted into a Maxwell's f ie ld  equation to 
solve for the input f ie ld .  (There is no analyt ic solution for  output f ie ld  as a 
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funct ion of input  f i e l d . )  However, for  the Fabry-Perot case, f i e l d  equations are 

required for both forward and backward t r ave l l i ng  waves and the whole s i tua t ion  is 

complicated by the standing waves due to the in terac t ion  of these two f ie lds .  So the 

f i e lds  must be solved progressively back through the cavi ty from the output taking 

in to  account the motion of the atoms through the standing waves. 

Even to solve a simple model where the mean f i e l d  approximation is made (Ef = E b) and 

standing waves are f i n a l l y  neglected requires transforming the density matrix elements 

to frames of reference where the time dependence is el iminated and an appropriate ave- 

rage over the standing waves can be performed. Our prel iminary attempts at f ind ing 

such a transformation have been unsuccessful. 

Some ins igh t  i'nto the phenomenon can be gained by solving for  the s i tua t ion  where each 

wave interacts wi th one t rans i t i on  only;  say m(t) is the in terac t ion  of the forward 

t r ave l l i ng  f i e l d  wi th the 11>-13> t rans i t i on  and B(t) the in terac t ion  of the backward 

t r ave l l i ng  wave with the 12>-]3> t rans i t i on  i . e .  

~( t )  = ~[e i (~ t -kz )  + c . c . ]  

8(t)  : m[e i(mt+kz) + c . c . ] .  

Neglecting standing waves, the density matrix component equations in the Rotating Wave 

Approximation are given by 

1 
T~ P33 + 2 Im (~13  + ~P23) = 0 

l l 
2~I P33 - TI (P22 - p11) + 2 Im (~p23) : 0 

l l 
2~1 p33 - TI ( p l l  - p22) + 2 Im (mp13) = 0 

(4 - i ) ~13 + im* (p11 - p33) + i s *  512 = 0 
~2 

(42 - i ) ~23 + i~ *  (P22 - P33) + i~*  521 = 0 
T-2 

(m21 + l ) P12 + i~ *  532 - i ~ 1 3  = 0 
T2 

where p13 and ~23 are def ined as, 

p13 = ~13 e i (mt -kz )  

p2~ = ~23 e i (mt+kz)"  

A = m-~31-kv 

A I = ~-~32+kv. 
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TI describes the relaxations from p33 to p~1 or p22 which occur with equal probability. 

T2 describes the relaxation of the dipoles associated with the ll>-13> and 12>-13> 

transitions. For dominant spontaneous emission as we have here 

T2 = 2TI = 32 nsec. 

Similarly, %1 and ~2 relate to relaxation processes between [I> and 12>. However, 

since this is not an allowed transition, a col l is ion mechanism would be dominant and so 

T t  = T 2  

Furthermore, with the vapour pressures used in this experiment, i .e.  lO -" to lO -5 torr,  

should be much greater than T2. 
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Fig: 5 Excited state population versus Doppler shi f t  for a) fixed laser detuning and 
vamous T and b) fixed T and various laser detuning. 

Fig. 5 (a) is a computer calculated plot of p33 versus Doppler shi f t  of velocity groups 

for the injected f ie ld  tuned to midway between the two transitions. At large ~, the 

excited state population goes to zero for kv = -m2t/2 indicating complete population 

trapping. However, as T diminishes, p33 becomes f in i te  due to leakage between the 

ground states. The Rabi frequency for these plots is 500 MHz. This value is an order 

of magnitude estimate for the intra-cavity interaction under our experimental condi- 

tions. 

Fig. 5 (b) i l l u s t r a tes  the ef f ic iency of the process as a function of laser detuning 

defined with respect to the frequency mid-way between the two t rans i t ions.  The popu- 

la t ion  s t i l l  goe s to zero at kv = -886 MHz due to energy conservation but the overal l  

e f fec t  diminishes. 

b) Ring Cavity 

The r ing opt ical  cavi ty is modelled as one t rave l l i ng  wave in teract ing with both t rans i -  

t ions, i .e .  

m(t) = m[e i (mt 'kz) + c .c . ]  
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for  both the 11>-13> and ]2>-13> t rans i t ions .  The density matrix component equations 

are the same as given ea r l i e r  fo r  the Fabry-Perot, except for  the de f in i t i ons  of  p23 

and At; and of course there are no standing waves to be neglected. We have 

p23 = ~23 e i ( ~ t - k z )  

A 1 = co-co~2-kv. 

The equations are solved for a given ~. 

il ' / 

'~ zo 

- 4  0 
LASER FREQUENCY(GHz) LASER FREQUENCY(GHz) 

~ n  a) Dispersion and b) absorption versus laser frequency for  various values of ~. 
ger marks on the frequency axis indicate the posit ions of the t rans i t ions .  

Fig. 6 show the dispersion and absorption for  strong, weak and very weak coupling 

between the ground states. Note that  at very weak coupling, the system behaves as a 

broad two-level scheme. The Rabi frequency of the in terac t ion  is 400 MHz. 

The Rabi frequency associated with the input f i e l d ,  ~ I '  is calculated by solving the 

steady-state f i e l d  equation, 

~I - ~ + i2C (P31D + ~32D ) -R ~( l -e  i@) = 0 
T2 T 

where C is the so cal led b i s t a b i l i t y  coe f f i c ien t  [8 ] ,  R is the r e f l e c t i v i t y  and T is 

the t r a n s m i t t i v i t y  of the mirrors and @ is the cavi ty  detuning parameter given by 

= m-mcav;(F.S.R. = free spectral range) 

F.S.R. 

where ~cav defines the frequency of maximum transmission through the cavi ty .  The den- 

s i t y  matrix elements have been integrated over the Doppler p r o f i l e ,  i . e .  

= ~ v 2 

~31D f ~31(v) exp (-702 ) dv 
v0 /~ 

where v0 = 2kT 
m 

is the most probable ve loc i ty  when the atoms are in thermal equi l ibr ium. 

C is estimated from the expression 
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C = ~2 ~ T2 p 
4 ~  ~0K 

where p is the atomic density and ~ is the inverse of the cavi ty l i f e t ime .  The es t i -  

mation is complicated by the fact that we do not have a s t r i c t l y  three-level system 

and that the induced dipole moment between hyperfine levels and sub-levels varies from 

t rans i t ion to t rans i t ion .  For example, for  l i nea r l y  polarized l i gh t  in teract ing with 

the D2 t rans i t ion  the dipole moment is calculated [9] to be 1.65 x 10 -29 cm for the 

F=2 -~ FI=3, M=O scheme but only 0.61 x 10 -29 cm for  the F=2 ÷ FI=2, M=I scheme. Thus, 

at 150°C, C is estimated to l i e  in the range from 500 to 3800. 

The density matrix equations and f i e l d  equation are solved numerically for  values of 

input f i e l d  as a function of output f i e l d  for  a given laser detuning. I f  b i s t a b i l i t y  

exists,  a character is t ic  S-curve w i l l  be obtained. Values of output f i e l d  for  a given 

input f i e l d  are then found by a numerical routine that finds the intersect ion of the 

output- input function and the l ine  representing the input f i e l d  desired. This is re- 

peated for  a selected range of injected f i e l d  frequencies and so a picture of cavi ty 

transmitted in tens i ty  versus laser frequency can be obtained for comparison with the 

experimental data. 
a) b) 

:= 
) 
z 

THREE LEVEL 
C= 400  

LASER FREQUENCY 

TWO LEVEL 
C=150 

LASER FREQUENCY 
7z Transmission of the r ing cavi ty computed at low C values for  Rabi frequency of 

a) three- leve l ,  C = 400 and b) two- level ,  C = 150. 

The computed transmission in tens i ty  versus laser frequency for the ring cavity for  an 

injected f i e l d  Rabi frequency of I00 MHz and C of 400 is shown in Fig. 7 (a). Compar- 

ison with the experimental data in Fig. 3 (b) shows some general agreement. However, 

the overal l  absorption p ro f i l e  appears wider in the theoret ical  calculat ion than in 

that observed and, unlike in the experimental data, the f i r s t  peak from the centre is 

larger than the second. 

Variat ion of the parameters Rabi frequency, C, T and cavi ty detuning do not enhance 

agreement. The problem appears to be that by using a su f f i c i en t l y  high value of C to 

obtain the necessary absorption leads to a p ro f i l e  that is too broad. 

The transmission of a r ing cavity containing an ensemble of two-level systems was also 
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calculated. The element p21 was calculated from the steady-state equations, v iz .  

P22 + 2 Im (~12) = 0 
Ti 

( A - i )  512 - ~(pz2-p11) = 0 

P l l  + P22 = l 

where 

A = ~-kv-w21. 

Fig. 7 (b) shows the resul ts of such a ca lcu lat ion for  a Rabi frequency of I00 MHz and 

C of 150. There appears to be closer resemblance to the experimental results than the 

three- level  model. This is probably due to the fact  that  more absorption is at ta inable 

at lower C values than for  the three- level  system so that the absorption p ro f i l e  is  

narrower. I n t u i t i v e l y ,  these sodium t rans i t ions  should not be behaving as two-level 

systems under these condit ions. A Rabi frequency of I00 MHz would not induce power 

broadening of the magnitude necessary to mix the two ground states. And there is no 

large homogeneous broadening. In fac t ,  co l l i s i ons  should be neg l ig ib le  at our pressures 

(mean free path = 5 cm). And l a s t l y ,  there is  the non-absorption resonance feature in 

the Fabry-Perot data which requires at least a three- level  system. 

a) b) 

/ 
THREE LEVEL 

C :  1700 

J 

TWO LEVEL 
C= 1400 

LASER FREQUENCY LASER FREQUENCY 

Fig, 8 
C = 17QO, Rabi frequency = 1 GHz b) two- level ,  C = 1400, Rabi frequency = I . I  GHz. 

Computed transmission of the r ing cavi ty  showing b i s t a b i l i t y  a) th ree- leve l ,  

The three- level  model w i l l  produce bistable ef fects .  Fig. 8 a) shows the transmitted 

i n tens i t y  of the r ing with an in jected f i e l d  of 1 GHz Rabi frequency, C = 1700 and the 

cav i ty  detuned 443 MHz (one ha l f  a free spectral range) from the frequency mid-way bet- 

ween the t rans i t ions .  This p lot  should be compared with the experimental data of Fig. 

2 b). There is general agreement with the form of the hysteresis and switching. What 

is not in evidence is  the absorption. The switching is always to almost 100% transmis- 

sion in the calcu lat ions.  
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Also, in disagreement with the experimental resul ts is the di f ference in power level 

required to obtain the effects of Fig. 7 a) and Fig. 8 a). The I00 MHz Rabi frequency 

used ea r l i e r  is below threshold for b i s t a b i l i t y  in th is  model. And 1 GHz Rabi frequency 

plots at the lower C number shows no absorption. Yet the experimental data shown in 

Fig. 2 (b) and Fig 3 (b) were recorded at almost the same injected f i e l d  i n tens i t y .  

Only the temperature was varied. 

Fig. 8 b) is the computer p lo t  of transmission for  the two-level model. C is s l i g h t l y  

lower and the Rabi frequency higher than for  the three- level  model but the p lo t  is a l -  

most the same. 

There are several other avenues that have yet  to be followed in any deta i l  but which 

have the potent ial  for  introducing the necessary absorption ef fects.  F i r s t l y ,  there is  

the removal of the mean f i e l d  approximation and inc lud ing in the model the absorption in 

the ce l l .  This implies al lowing for  a decreasing f i e l d  as the beam progresses through 

the ce l l .  Second, is the in t roduct ion of unequal dipole moments for  the two t rans i t ion~  

Added absorption can also be introduced by decreasing TI and T2 but th is  is not consi- 

dered r e a l i s t i c  for  two reasons. One, spontaneous emission should dominate co l l i s i ons  

as the re laxat ion process under our condit ions of operation. Hence there should be no 

increase in the homogeneous l ine  width. Two, TI could be affected by al lowing for  atoms 

entering the laser beam in the ground state.  However, since we only observe the centre 

of the transmitted beam, a l l  atoms cont r ibut ing to the data should have reached a steady 

state. 
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POLARIZATION SWITCHING AND OPTICAL BISTABILITY WITH RESONANTLY DRIVEN J=½ TO J=½ 

ATOMS IN A RING CAVITY 

W.J.SANDLE and M.W.HAMILTON 

Physics Department, University of Otago, P.O. Box 56, Dunedin, New Zealand 

Introduction. 

We have three main objectives in this seminar: 

- to introduce in a tutorial vein the use of the standard irreducible tensor 

approach for the calculation of atomic polarization; 

- to illustrate the method by application to a specific problem of interest: 

the steady-state behaviour of J=½ to J=½ atoms in a ring cavity with a weak 

magnetic field applied transverse to the propagation direction; 

- to present a selection of our experimental results on polarization switching I 

of cavity output field with linearly polarized excitation. 

These experimental results are the first which show the complete polarization 

switching sequence - from linearly polarized output at low input power to elliptically 

polarized output at intermediate input power and back to linear output at high laser 

power - and which report purely absorptive polarization switching 2. 

Standard irreducible tensor methods. 

These methods 3, although now widely applied in the atomic physics community, 

are only beginning to be appreciated in quantum optics. They enable a rigorous and 
3 

complete solution to atomic behaviour while making maximum use of symmetries present . 

The density operator p is expanded in a basis of operators T "k'( % (which we can 
q 

more usefully describe as basis vectors in product (Liouville) space) which have the 

same transformation properties under rotations as a simple ket I~FM> (in Hilbert 

space) with angular momentum quantum number F (=k) and component M(=q). (The label 

describes remaining quantum numbers needed to fully specify the state). 

Thus, restricting discussion to a two level case with degeneracies 2Ju+l (upper) 

and 2Jz+I (lower) we expand 

P = ,8~u,iPq k(~8) T (k)q (~8) 

k,q 

(i) 
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in terms of standard irreducible components p~(uu), i.e. upper state population (k=0), 

orientation (k=l) alignment (k=2) etc; p~(%Z), lower-state population, orientation, 

alignment; and the off-diagonal terms Qq(Ul), p (£u) which are sometimes called the 

"atomic" or "optical" coherences to distinguish them from the "Zeeman" coherences 

(off-diagonal terms within the same level). The exact form of the pk(~) depends of 

course on the phase choice in the basis T(k); it is usual and convenient ~ to make the 
q 

standard choice from angular momentum coupling theory: 

T (k) ¢cm) = s ¢-)G--N<~GM--NI~q>[ ~F~<~GN[ 
q 

M 
(2) 

where <FGM-NIkq> is the usual vector coupling (Clebsch-Gordan) coefficient (Messiah's 

notation 41. 

Atomic evolution for Ji=½ to Ju=½ in a transverse field 

The equations for the evolution of the density operator components O k under an 
q 

applied electric field 

E (r,t) = Eo(r) {~exp(-i0Jt) + @*exp(i0~t) } (3) 

of frequency ~ with amplitude 2Eo(r) and polarization ~~ are given by Ducloy 5. They 

are lengthy and will not be repeated here in their general form. For the special 

case of J£=½ connected to Ju=½ by exactly resonant radiation propagating along the 

quantization axis (so only ~+, ~_ transitions occur), neglect of all atom velocity 

effects (homogeneously broadened transition) and with the assumptions that inelastic 

collisional rates are zero, that the lower level is the ground level and that there 

are no incoherent pumping processes, we find the following equations 

* *~1" * ~1" p~(Z) : ¥0°¢u) -iv{C Q1(iu)+e ~I (%u)} + iv {£ O (gu)+e 0 (%u)} (4el 
0 0 1 1 - - 1  - 1  1 1 - 1  - 1  

Q0(U) = -60(2) (4b) 
0 0 

0 1 0 3 0 - 1  

-iv{~ ~i<~u)-~ ~i (~u)} + iv*{~*~1*c~u)-~*~1*C~u~} c4c) 
1 1 - I  - I  1 1 - 1  - 1  

iC0L pl 
~i¢~) = -r (~)~11¢~) - !¥plCu) - 7f ¢~) 

1 1 3 1 0 

+iv~ {~°(~u)+~ic~u)} + iv*~*{~ °* -i ~ (£U)-O *(%u) } (4d) 
-i 0 0 1 0 0 
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61 (k) = -F (k) pl (k) - !Tpl (u) - ~pZ(Z) 
- 1  1 - 1  3 - 1  0 

+ivg { p°Cku)-plCku)} + iv*g* { ~0 *(ku)+~l *(ku)} 
1 O 0 - 1  0 0 

~1(u) = -r (u)p1(u)-iv{~ p1(ku)-~ pl (ks)} +iv {E p (ku)-~ p (ks)} 
0 1 O 1 1 - 1  - 1  1 1 - 1  - 1  

~i (u) = -r (u) ~ (u) - iv~ { ~° (ku) -~ (ku)} - iv*J{ ~o *(ku)+pl *(ku) } 
1 1 1 - 1  0 0 1 0 0 

~i (U) = -F (U)O I (u) - ivg {p°(ku)+pl(%u)} - iv*g* {p°*(ku)-Pl*(ku)} 
- 1  I - 1  1 0 0 - 1  0 0 

~0(~U) = -r 0 (ku) ~0(ku) - iv*(e*{ O I (u) - O 1 (k)} + e* { of(u) - O I (k)}) 
0 " 0 1 - 1  - 1  - 1  1 1 

l(ku) = -r (~U) Ql(ku) - iv { (u) + (k>} - e { (U) + p (k) 
0 i O I -i -I -I I 

;l(ku) = -F (kU) pl(ku) + iv*g*{ p0(U) - p°(k) - 01(u) - Of(k)} 
1 1 1 1 0 0 0 0 

pl (ku) = -r (~u) ~I (ku) + iv*~*{p °(u)-p °(k)+0 I(u)+0 I(£)} 
- 1  1 - 1  - 1  0 0 0 0 

(4e) 

(4f) 

(4g) 

(4h) 

(4i) 

(4j) 

(4k) 

(4k) 

Here, we have expressed the electric field polarization in standard components, 

where 

^ ^, ^* 
e = £ e + g e (5) 

i~i -1~-i 

have written pk(zk) as p"(k) k q (similarly for u), we have abbreviated d£uEo/~I/6 we 
q 

(where dku is the reduced dipole matrix element for the transition) as v, we have em- 

ployed a rotating frame at frequency ~ to supress rapid time dependence of the atomic 

coherences, and we have expressed as Fk(k) , Fk(U) , Fk(kU) the relaxation rates of 

P~(~)'1" p~(u)1" and pk(~u) respectively. (Note that one of the fundamental reasons for 
q q q 

using an irreducible tensor basis for our treatment is that radiative decay and coll- 

isions do not give rise to mixing of irreducible components with different k's and 

q's. If we had used a Zeeman representation, Pmm' (~), Pmm' (u), p~, (ku), such mix- 

ing would have to have been taken into account). We shall be concerned with the case 

where Fk(U) and Fk(kU), which include the effect of radiative decay and collisional 

destruction of upper-state-Zeeman and atomic coherences, are much larger than Fk(i). 

Finally, we have included terms -(J~0L/V~) {pl (k)+p I (gf)} and -(i60L//2)p I (Z) to account 
I -I 0 

for the evolution of pl(k) and p1+i(~) due to the transverse magnetic field B x (Fig. l) 
o 

(t°L = -gJk ~ BBx/h = Larmor frequency). [ These terms follow from evaluating within 
.~L 

~nl ~B,p] = -i~0~ Jx,p] = ~ J++J_,p] ,_empl°ying [ J+,T (k)]q = the lower (k) manifold .-~-[ -1-4-- [ 

~<(k+l)_q(q+l ) ~(k).±.q+l (ref.4) and using the orthogonality of the T (k)~ (ref.l) . We 
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note that Larmor precession terms are retained only for the lower state; it is supp- 

osed that ~L~FI(~), but that ~L<<FI(u) or F1(iu). ] 

The macroscopic polarization. 

For density N of J%=½, Ju=½ atoms in volume V, the polarization is (o+, o- 

transitions only) 

%7.N dul [ ~l(Q~(lu ) + Q1 (lu)) + ~ (01 (%u) +01(iu) ) ] (7) P 
3 -I ~-i -! i 

Upon solving equations (4a) - (4~) for 01(%u) and 01 (£U) in the steady state (in the 
1 -I 

rotating frame) for the case of elliptic polarization of high eccentricity with major 

axis along Bx, we find for the susceptibility 

i~c 
X± = ~ n± , (8) 

involving the weak field absorption coefficient 

N~c 2 y 
= ~-~v r1(gu) a 

(9) 

and the function n± given by 

~+ (10a) 
n+ = D 

where 
2 

co L 

n~ = [ I+2BL(X+Z+x-2) ] [ I+4BLX2 ;1 + ~i~2[ I+28H (x+2+x_2)] [ I+4~HX2 ~] 

D = [ I+2B L(x+2+x 2)1 [ i+(4+2B L) (x/+x 2) +a2BLx/x 2 I+ ~L~, 2[ l+2B (x 2+x 2)1 
- - - I l (£) H + - 

× [I+(4+2BH) (x+2+x_2)+32BHX+2X_ 2 ] 

(10b) 

(10c) 

Y Y for Fl(1)<<y 
B L - Fl(1)Fi(u)[Fl(1)+ ~(u)- ~]~ F1(i ) 

Y 
~H F I (u) 

(lla) 

(llb) 

and 

= ,,IEoE~I/E sat x_+ (12a) 

where Esat = ~[6~Fl(lu)]½/duZ . (12b) 
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special cases. 

This general expression for the susceptibility is complicated, but in two cases 

of interest we obtain the following simple form for N±; 

(28_4)(x±2_x2) -I 

~± = {l+8xf 2 + } (13) 
l+4Bx; 2 

These cases are: 

(i) where we have low transverse magnetic field, ~L<<FI(£), when 8 (eq.(13)) 

is to be identified with 8L (eq.(lla)), and, 

(ii) for "high" transverse field ~L>>FI(1) (.but ~L<<, Fl(u) , Fl(£u)) when the 

same equation for N (eq.(13)) applies but where now 8 is to be identified with 8H 

(eq.(llb)). (Note: This requires x+~x_ with polarization major axis along Bx). 

We observe that these two values of ~ (8 L and ~H ) are widely dissimilar. In 

essence, the application of the transverse magnetic field has the effect of modifying 

8- When the transverse field is small, 8 is essentially (eq. (lla)) determined by 

the ratio of natural decay rate to collisional transfer rate in the lower state. 

When on the other hand the transverse field is large enough that ~L>>FI(1), the lower- 

state collisional rate becomes immaterial and 8 is determined by collisional and rad- 

iative relaxation in the upper state. 

The importance of the conclusions reached above will become clear following 

the next section when we see that the predicted switching behaviour in an optical bi- 

stability/polarization switching experiment is expected to be strongly dependent on 8, 

and thus should be strongly modified by the presence of a magnetic field. 

Polarization switching state equations. 

Given the susceptibilities X+ and X (eq.(8)), state equations for the arrange- 

ments as in fig. l are obtained by the usual method upon invoking the mean-field app- 

roximation (see, e.g. ref.(6)). We suppose that one or other of the limits ~L<<FI(1) 

or ~L>>Fl(£)applies, and we remember that the case of large ellipticity of the polar- 

ization ~avity field with major axis along B x has been assumed. Then for the cavity 

tuned to resonance 

2C ] (14) 
y± = X+ [i + ' (2B_4) (X+z_x~2) 

- I+8X+2 + i+48X ~ 

where the scaled input field amplitudes are 
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_ Ein in m Esat (I-R) ½ ] (15) 
Y+ = ~ 1 

and cooperativity 

dLR 
C = - -  ; (16) 

4(I-R) 

x and x are scaled output field amplitudes defined in eq. (12). The state equations + 

(14) are identical to those obtained in ref. (6) (case of exact resonance and zero tran- 

sverse field) where no constraint was placed upon the polarization ellipticity/7) 

E in 
> 

(Superposition of / 
circ61arly poiarlzed 
components ~n, £ ~_n ) 

/ 

R=IOOZ~ 

S x 

z [0____]~_ L 
= __z i > \ EOUt 

components E~!  ~'°ut ) 

/ 

< / R=IOOZ 

Fig.l: Ring cavity configuration that i8 analysed theoretically. 

Thus for ~L = 0 eqs. (14) are exact (within the mean field limit) for all input fields 

y+, y_, and we shall first explore the form of the solutions to eqs. (14) as ~ is 

changed, imagining that control of ~ is via the values of FI(~) , Fl(u) , ~ inserted in 

eq. (lla) and that the magnetic field is being kept at zero. 

Dependence on ~ for y+ = y_. 

Figs.2(a) and (b) show steady state solutions to eq. (14) (x+ versus y+ and x+ 

versus x_) for C = i0, 8 = 8.8. Unstable solutions are shown as dotted lines. We 

note the existence of symmetric (i.e. linearly polarized with x+ = x_) and asymmetric 

(elliptically polarized x+ ~ x_) solutions. The sy[~etric solutions obey (from eq. 

( 1 4 ) )  
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y+ = x+ [i + 2C ] 
2 l+8x+ 

which is the form of the two-state optical bistability equation as expected 8. 

(17) 

4.0 

2.0 

X÷ 

4.0 / / i  

is" 
i i  / 

:V ° 

', , - -... ', 

y+ 20 4.0 

2.0 

X+ 

0.0 0.0 

(a) 

Fig. 2: Predicted behaviour for 13>2. 

%1%% 

, , ] 2 .  

Bt ~ 

X _ ~;o do 

(b) 

The arrows indicate one of the two 
possibilities for polarization 
switching (where x+ switches first). 

However, as y+ (=y_) is increased from zero, the symmetric solution is followed only 

to the lower bifurcation point BL, beyond which asymmetric solutions appear. The 

abrupt change in the cavity output polarization (for example as described by the arrows 

in fig. (2)) is what we term polarization switching. At sufficiently high input 

field, saturation of the transition occurs and the output field reverts to linearly 

polarized. Clearly on reducing the input field there are regions of hysteresis with 

(e.g.) switching back to the asymmetric state at the upper bifurcation point B u. 

An analytic examination 6 of eqs. (14) shows that polarization switching is ex- 
3 5 

pected for 8>2; the switching will be abrupt (with hysteresis) if C>~ + ~ and will 
6 3 5 

evolve smoothly (no hysteresis) if 1 + ~< C < ~ + ~ . If 8<2, a situation such as 
6 

shown in fig. 3 will occur where the asymmetric solutions are contained within the 

unstable part of the symmetric branch; normal optical bistability with no polarizat- 

ion switching of the output field should be observed as the input field amplitude is 
6 

varied. Note:C =i +~ gives minimi~n power for polarization switching, but switching can 
1 3 4 ~:T 

be observed for C > ? + = + (~ + ~--~ ) 
5 D 

o 

Im~0rtance of a transverse field. 

Now the importance of B x becomes clear. If B x is sufficiently large (~L>>FI 0)) 

then the value of ~ to be used in eq. (14) is necessarily less than two, since 
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= ~H = x/FI(u)<I" Thus we expect normal 40 

optical bistability but not polarization 

switching to occur; the approximation of 

large ellipticity leading to eqs. (i0) is 

justified, and eq.(14) with ~ = ~H can be 

applied. 20 

Alternatively, for Bx~0(~L<<FI(Z) 

the value of 8 to be used is 8L, which may X+ 

be greater than two provided Fl(1) is suff- 

iciently small. This is the case in the 0.0 

experiments upon which we shall now report. 

Fig. 3: 
C = 10. 

Experiment. 

y÷ 2.0 ,~o 

Predicted behaviour for B = 1.33, 

Fig. 4 gives a schematic of the ex- 

perimental arrangement. Up to 500 mW of I -"'-'" I r ' ~ ' ~ j ~ \  

linearly polarized single mode stabilised 

laser radiation is mode matched into a ~ 
~O~ 

L~S near-concentric Fabry-Perot cavity (250 MHz 

FSR, R -- 98%) containing an L = i0 cm Na ~ ~  ~ . ~ 
[] ; . ! D  

cell with 50 torr Ar buffer gas. The py- CALC,T, : : 
P~ISM ' / 

rex cell windows are set perpendicular to ,~ : 
, I ~ODULATOR 

the beam and single layer antireflection 

coated on the outer surface. During the 
Fig. 4 : Experimental arrangement. The 

course of the experiments Na attack on the cavity is a linear Fabry-Perot mounted 

windows slowly reduced the overall finesse; in a mild steel evacuable tank. The 
laser beam following the electro-optic 

the value appropriate to the experiments modulator is linearly polarized. 

reported is ii (for zero Na density). 

The cell and etalon are mounted inside an evacuable tank which serves the dual pur- 

poses of reducing schlieren effects and screening magnetic fields. Fine control of 

magnetic field is achieved via coils in the tank. The output from the cavity is an- 

alysed for polarization character by use of a Fresnel rhomb and calcite crystal to 

direct o+ and O- beams into separate detectors. 

Figs.5(a) and (b) illustrate, for the absorptive case with zero transverse 

field,polarization switching with and without hysteresis respectively. In fig. 5(a) 

the Na density is ~1.3 × 1011 cm -3, and only the lower switching to the asymmetric 

state is accessible with our relatively poor cavity gain. In fig.5(b) the Na den- 

sity has been reduced to approximately 4 × i0 I0 cm -3 in order to show the upper switch 
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(a) (b) 

Fig. 5: Oscilloscope displays of o+ (lower trace) and o_ (upper trace) intensities 
versus input laser power. 

(a) horizontal trace 0-165 mW. The ~at portion at the top is detector 
saturation. 

(b) horizontal trace 0-180 mW. 

non-abrupt) back to the symmetric state as saturation occurs. We confirmed that app- 

lication of a transverse magnetic field of ~i Gauss was sufficient to move the thresh- 

old for purely absorptive polarization switching outside our range of observation. We 

were not able to check that this field gave absorptive optical bistability (because of 

low cavity gain) and we refer (e.g.) to ref.9 for experimental evidence for this case. 

Finally in fig. 6 we show (again 

with Bx=0) the complete polarization 

switching sequence from symmetric at 

low powers to asymmetric at inter- 

mediate power back to symmetric at 

high laser power. In order to see 

this, we detuned the laser frequency 

1.5 GHz below line centre and re- 

quired the full available power at 

the cavity of 500 mW. 

Acknowledgements. 

Fig. 6: Oscilloscope displays of a+ (lower trace) 
and o_ (upper trace) intensities for the disper- 
sive case. The traces are separated vertically 
for clarity. Horizontal trace: laser power 
(O-500mW) Na density 9 xlO I° cm-3 
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ABSTRACT 

Predictions of self-oscillation and chaos in optical bistability in a ring cavity 

are reviewed. Each is derived as a special case from a single unifying stability 

analysis. Three other systems which also show self-oscillations and chaos are 

discussed. Each comprises two ring-cavity modes interacting via a nonlinear medium. 

Nonlinear couplings are provided by a J = ½ to J = ½ transition, a two-photon transi- 

tion, and a second-order nonlinear susceptibility, respectively. A new type of 

period-doubling to chaos which occurs in the first of these models, and also in the 

Lorenz equations, will be described. 

INTRODUCTION 

As evidenced by other articles in this volume, optical bistability is of interest 

both for the fundamental physics involved in its study, and for its potential use in 

the construction of practical optical devices. It has been an important development 

from both perspectives to learn that bistable systems may become unstable, and for 

a CW input produce an oscillating output (I-12) . These oscillations may be periodic, 

suggesting obvious applications, or aperiodic with a broadband power spectrum, a 

phenomenon known as chaos. In these lectures I will be concerned with the theoretical 

analysis which predicts these possible behaviours in ordinary absorptive and dis- 

persive optical bistability, as well as in bistable and multistable systems designed 

around other optical nonlinearities. 

While periodic oscillations clearly have more direct device applications, it has 

been the possible chaotic behaviour of bistable systems which has captured the imagina- 

tion of so many workers. Instabilities leading to periodic self-oscillation were 

first discussed by McCall (1) and Bonifacio and Lugiato (2) . The current rapid growth 

of interest in optical chaos followed Ikeda's prediction of chaotic oscillations in 

the output from a ring cavity with dispersive nonlinearity (3'4) Since Ikeda's work 

experimental observations of chaos have been made (9'12) , and further predictions of 

chaos in bistable or multistable systems have appeared (I0'II'13'14) . Throughout these 

lectures I will be concerned only with passive optical systems. The subject of self- 

oscillation and chaos in laser systems is covered elsewhere in this volume. 

#On leave from Physics Department, University of Arkansas, Fayetteville, AR72701, U.S.A. 
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It is not my intention to discuss the general theory and nature of chaos beyond 

mentioning here some of the most elementary ideas. For thorough discussions of 

chaos and examples in various scientific disciplines there are a number of reviews 

available (15-20) " 

We are concerned with nonlinear dissipative systems, physically a cavity mode 

dissipates energy through partially reflective mirrors or an atomic medium dissipates 

energy via fluorescence. Mathematically the system evolves in a multi-dimensional 

phase space where the volume of phase space is not conserved but shrinks to zero 

for infinite times. For such a system we expect the long-time behaviour to evolve, 

after transients, to something simple, and persistent - e.g. a steady state (a fixed 

point in phase space) or a periodic oscillation (a limit cycle). These are the 

attracting solutions, or simply attractors. The long-time behaviour need not be 

simple however. Another possible attractor is a quasiperiodic oscillation, decompos- 

able into a finite number of noncomensurate frequencies and their harmonics (motion 

on an°n-torus). Such an oscillation is not periodic and may be very complicated, 

even appear noisy - though still the Fourier spectrum is discrete. Then there is 

the possibility of chaos. The long-time behaviour may be an aperiodic oscillation 

associated with evolution in phase space on a strange attractor. Here the Fourier 

spectrum contains broadband features and the evolution is unpredictable in so much 

as nearby points on the attractor evolve into the future along diverging trajectories. 

As the physical parameters (laser intensity, etc.) in a system are altered, 

attracting solutions may become unstable and be replaced by new attractors. This is 

the process of bifurcation. In optical bistability, the'bistability' refers to the 

coexistence of two stable steady states. For certain experimental configurations 

one or both of these steady states may become unstable and be replaced by a periodic 

oscillation. In some cases a sequence of bifurcations to more complicated oscilla- 

tions occurs with the eventual appearance of chaos. In the first part of these 

lectures I will discuss the stability of the steady state for optical bistability 

using the familiar model of a two-level homogeneously broadened medium in a ring 

cavity. For this system seven instabilities have been reported in the literature. 

Bonifacio and Lugiato (2) , and Carmichael et al. (31) , have reported instabilities in 

absorptive systems leading to periodic self-oscillation. Instabilities reported by 

Ikeda (3) Ikeda et al. (4) , , Ikeda and Akimoto (I0) , and Lugiato et al. (II) , in systems 

with dispersion, lead eventually to chaos. I have not seen a detailed study of the 

oscillatory states that arise from the instability reported for dispersive systems 

by Lugiato. (5) 

Since optical bistability by nonlinear absorption and dispersion was first 
(21) 

proposed, it has been realised that bistable or multistable systems may be 

devised using virtually any optical nonlinearity. Polarisation switching has been 

predicted for two ring-cavity modes with opposite circular polarisation interacting 
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(22) (23,24) 
via a J = ½ to J = ½ transition This has recently been observed Also, 

(25) 
two-photon optical bistability has been predicted and observed in Rubidum 

(26) 
vapour . In the second part of these lectures I will discuss recent predictions 

of chaos in both of these systems (13'14) , and in a system comprising a ring-cavity 

mode and its second harmonic interacting via a second-order nonlinear susceptibility. 
(27) 

The latter has been shown to exhibit periodic self-oscillation by McNeil et al. 

In my discussion of polarisation switching I will look carefully at the sequence of 

bifurcations leading to chaos as the incident laser intensity is changed (the route 

to chaos). A period-doubling sequence of a new type has been found (Carmichael et al. 

Ref.13). This sequence also exists in the Lorenz equations and appears to correspond 
(28) 

to a sequence reported recently for one dimensional mappings with two extrema 

In Section 2 I review the instabilities predicted for ordinary optical bistability 

in a two-level homogeneously broadened medium in a ring cavity. Sections 3, 4 and 5 

are devoted to chaos in polarisation switching, two-photon bistability, and second 

harmonic generation, respectively. 

2. ABSORPTIVE AND DISPERSIVE BISTABILITY IN A RING CAVITY 

The ring cavity model with homogeneous broadening is by now a familiar vehicle 

for theoretical studies of optical bistability (29) . Laser light of frequency ~0 

is incident at the input of a ring cavity containing a two-level homogeneously 

broadened medium with resonant frequency ~ . The cavity input and output mirrors 
a 

both have reflection and transmission coefficients R and T = (i -R), with 

associated phase changes ~R and ~T' respectively. All remaining mirrors are perfect 

reflectors. The internal cavity field propagates in the z-direction through a medium 

with density N extending from z = 0 to z = L. The full round-trip distance 
v 

in the cavity is L + i. 

In what follows transverse effects will be neglected and the cavity field is 

expanded as a plane wave: 

÷ ÷ e-i(~0t-k0z ) E(z,t) = e0E(z,t) + c.c., (2.1) 

where e0 is a polarisation vector, k0 = ~0/c, and E(z,t) is a slowly varying 

complex field amplitude. As indicated, spatial variation of the cavity-field 

amplitude in the direction of propagation will be included. Boundary conditions for 

the cavity may conveniently be referred to the ends of the medium. Then at z = 0, 

E(0,t) = (i - R)½ei~TEI + RE(L,t-~)c e-ie' (2.2) 

and at z = L, 

i' 
ET(t) = (i - R) ½e i~T E(L,t--- ) , (2.3) 

c 

where E I and ET(t) are incident and transmitted field amplitudes, respectively; 

@ = -[k0(L + i) + 2~R]mod2~ , -~ < @ < ~, is the empty cavity detuning; and l' is 
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the distance from the end of the meditnn at z = L to the output mirror. The mathemati- 

cal formulation is completed by Maxwell-Bloch equations describing the propagation 

of E(z,t) through the medium. In the slowly varying amplitude approximation 

Maxwell's equations give 

~E 1 ~E ~k 0 
~-~ + C ~t i ~ P, (2.4) 

where ~ (~ = e0. ~) is the dipole moment. The polarisation P (~p in units of Cm -2) 

and inversion density D satisfy the Bloch equations 

~P 
~--~ = -i ~ ED - ~'I (I + iA)P, 

~D -2i ~ (E*P - EP*) - Y,l (D + Nv) ~-C = ~ 

(2.5) 

where Yi! and ~ are longitudinal and transverse relaxation rates, and 

A = (~ - w0)/y & is a dimensionless detuning. a 

It is convenient to introduce the dimensionless field amplitudes 

F'I = (l-R) ½ei~T(2~/~)[yil yl(l + A2) ]-½EI, 

E(z,t) = (2~/%h)[Yll Yl (I + A2) ]-½ E(z,t) (2.6) 

ET(t) = (I - R)-½e-i~T(2~/h) [~'II %[I (1 + A2) ]-½ET(t)' 

and the average inversion seen by a wavefront propagating from z = 0 to z (@uring 

I t - z/c to t): z 

i [ z-z' 
,NvD(Z,t) = ~ ] dz'D(z',t - - -  ). (2.7) 

c 
0 

Then from Eqs. (2.4) and (2.5) the steady-state solution for the cavity-field 

amplitude, 0 ~ z ~ L, is (29) 

Ess(0)e-~Z/2(l -iA)Dss(Z) , (2.8) (z) = 
ss 

with 

Dss(Z) - 1 

where 

-(CCZ) -IIEss(0) I 2 (i - e"(~ZDss(Z)), (2.9) 

= (i + ~2)-1(U2Nvk0/¢0~y~ 

is the off-resonant absorption coefficient. The relationship between incident and 

transmitted fields follows from the boundary conditions (Eqs. (2.2) and (2.3))= 

ET = EI e-~L/2(l -i~)Dss(L)[I - Re-aL/2(l-i~)Dss(L)e-iO]-1 (2.10) 

where 

-Dss(L) - 1 = -(~L)-I..I~TI2(e~LDss(L) _ i) . (2.11) 
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Our concern is with the stability of this steady state. In principle the 

question of stability is addressed in the same manner as for simple systems of 

ordinary differential equations. We linearise Eqs. (2.4) and (2.5) about the steady 

state and look for solutions governed by an exponential growth (unstable) or decay 

(stable). In practice, since Eq. (2.4) is a partial differential equation, the 

calculations are a little more complex. I will omit the tedious detail and jump 

directly from a formulation of the problem to its solution. 

A general solution to Eqs. (2.4) and (2.5) is written 

+ = (z) + Z A`1(z)e , (2.12) v(z,t) ~ss ,1 

where ~ - (E,E*,P,P*,D), and Al(z) describes a spatially dependent mode 

corresponding to the eigenvalue 1̀. After linearisation Eqs. (2.4) and (2.5) are 

solved for 

~'I(L) ] = AE'I(0) ] (2.13) 

I AE.,`1(L)~ M(`1) [ ,.,`1(0)~ 

where M(1) is a 2 x 2 matrix and AE,`1 and AE,,` I are the first two components 

of A`1. However, boundary conditions (Eqs. (2.2) and (2.3)) require 

AE,`1(0) ] = Re_i/c`1 0 (2.14) 

~,,`1(0)) 0 e i@ ~,,`1(L)~ 

Then together Eqs. (2.13) and (2.14) define a homogeneous algebraic system, which, 

for a nontrivial solution, requires [e0 }] 
det[ Re -I/c`1 0i@ M(`1) = 0 (2.15) 

0 e 

The eigenvalues 1̀ are solutions to this characteristic equation. 
(3O) 

bistability (~ = @ = 0) Eq. (2.15) reads 

[ ~ss (L) 1 ¥~ 

For absorptive 

`1+2y 
+ 

. . . .  | 

(`1+Y,,) (̀ 1+Yj.) + Y,, Y~ss(~') 2J 

X [ 1-Re -`1Tr (Ess(L)) Y~+Y~] : 0 ~  ( 2 . 1 6 )  

ESS (0) 

where T = (L + l)/c is the cavity round trip time. For systems with dispersion 
r 

I do not have a general analytical solution for M(`1) ; however, after an adiabatic 
(31) 

elimination of the polarisation Eq. (2.15) reads 

1 + R2e -2`1Yr lEss(L) 12 X + Y0a (i + IEss(0){2) _ Re -`1Tr 

l ss(0) 12 1̀ + y,, + l ss( )12) 
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{[ I + ~Jf (i + IEss (0) 12) ] Ess(L) e-i@ ] 
x + 1 Re('- 

1 +¥,, (1 + l~ss(ml 2 ) Ess(0) 

+ A [ I + Y'' (I + IEss(0)'z) - 1 ] Im (~ (L)ss e-i@)} = 

I + 7. (1 + IEss(L)I 2) Ess(0) 
0 (2.17) 

The seven instabilities I will now review may all be identified in the solutions of 

either Eq. (2.16) or Eq. (2.17). Of course, these equations are too complicated to 

be solved generally. Each instability is associated with a set of simplifying 

assumptions used to cast the characteristic equation into a solvable form. These 

assumptions fall into two broad categories; those based on time scales, and the 

familiar assumption of the mean-field limit. 

There are three time scales explicitly evident in Eq. (2.16), each represented 

by a characteristic time appearing in combination with I - the terms ITr, (I + ~i), 

and (I + y~). The size of I compared with Tr-i ' Yl! ' and y~ determines 

the relative importance of these terms. For example, Eq. (2.17) eliminates the 

polarisation a priori. Consequently, for A = 8 = 0, Eq. (2.16) agrees with Eq. 

(2.17) if we look for solutions with ~ ~ ~. Assuming ~ << 7~ simplifies 

Eq. (2.16) considerably. 

The mean-field limit has been a popular device for simplifying calculations on 

many aspects of optical bistability. It assumes that round-trip losses and phase 
(29) 

shifts are small - strictly; 

~÷0, (i R) ÷0, e÷0, IE 12÷0, IETI 2÷0 
with 

~ e I~I I~ 
=-- In 12 C 4(I-R) ' ~- I-R' Y I-R ' X = T 

all constant. In Eqs. (2.16) and (2.17) the medium is represented by terms which 

differ from unity only to the extent that E (z) is not uniform, and in taking 
ss 

the mean-field limit this deviation from uniformity is of the order (i - R): 

l~ss (~)I 2c 
1 - (i - R) (i - iA) + 0[(i - R) 2]. (2.18) 

i~ss(0) I 1 +x 

It follows that Eq. (2.16), for example, may be written as 

(e ITr - 1)2[(I + y,, ) (I + y~) + ~,, ylX] + 0[ (i - R) ] = 0 (2.19) 

Without the term 0[(I - R)] the solutions are eigenvalues for an empty cavity with 

perfect reflectors and a two-level medium driven by the intensity X - there is no 

coupling between the cavity and the medium. With the term 0[(i - R)] corrections 

to these eigenvalues may be calculated by perturbation theory. 
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Although it is often overlooked, something should be said about time scales in 

the mean-field limit. I will distinguish two versions of this limit according to the 

behaviour of YT r ~ YI! T r or y~T r. This parameter characterises the relationship 

between the homogeneous width for the medium and the frequency spacing of the longi- 

tudinal cavity modes. I will define the mean-field multimode limit by, in addition 

to the above, 

(i ~ R) 
yT r constant, Y Yrr ÷ 0; 

and the mean-field single-mode limit by 

< (i - R) 
~T r ÷ 0, constant. 

Y YT r 

Here K is the cavity decay time. The perturbative solution of the characteristic 

equation is carried out differently for the two cases [32)'" . Usually, by the mean- 

field limit, it is meant the mean-field single-mode limit. 

In what follows the stability analysis as presented only indicates the existence 

of an instability. The behaviour which replaces the unstable steady state, be it 

precipitation to a coexisting steady state, periodic self-oscillation, or period- 

doubling to chaos, has in each case been determined by additional work which goes 

beyond a linear stability analysis. 

INSTABILITIES IN THE MEAN-FIELD MULTIMODE LIMIT 

i. Absorptive Systems- Ref.2 

The two factored equations following from Eq. (2.16) determine independently the 

eigenvalues governing the evolution of in phase and in quadrature fluctuations from 

the steady state. To first order in (i - R) these read, respectively, 

_ [ 2C I + y,, (i - X) ] = 0 
1 - e ~Yr (i - R) 1 + ~ y~ (I +y~, ) (I +y~) + YI, Y~x 

2C 1 ] 1 - e IT, - (i - R) 1 + ~ y~ I + y~ -- 0 

I will scale time in units of ~l -I and write ~ = I~i-I and F = y~/y, Then 

the solutions for ~ in the limit (i - R) + 0 are 

~(o) 
l,n 

~(o) 
3,4 

(2.20) 

= _ 1 ~ , 

~(0) 
= 2,n = -iSn = -i2~n/yl! Tr, n = 0, ± i, e 2, ... 

= _ 1 {i + F ± [(i - F) 2 - 4FX] ½ }, (2.21) 
2 
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and in the multimode limit their perturbative corrections are 

^ < I 2C i - X- i~ D 1 Ii, n = -i~ n - ~ 1 + ~ F .. 
(l-i~ n) (F-i~ n) + I"X 

n = 0, ±i, ~ 2, ... 

K I 2C I 1 12, n = -i~ n - -- 1 + ~ F F - ie 
VII n 

^ 

13,4 

n = 0, ±i, ±2, ... 

^(0) (2.22) 
1 - X + 13.,4 ^(o) 

13, 4 - (i - R) (i + F + ) 
r ~(0) 

exp(/3,4Vl! Tr) - i 

¢(0) 2C 1 
^5 = A 5 - (i- m F 

~(0) Tr ) i exp (I 5 VI I 

These are the "dressed" eigenvalues (32' 33) There are two for each cavity mode 

(complex field amplitude) and three for the medium (inversion and complex polarisa- 

tion). The terms propertional to K/VII and (i - R) vanish in the limit; however, 

^ ~2 the cavity eigenvalues ~l,n and ,n are then pure imaginary. Stability for 

the cavity modes is then determined by the perturbative corrections. Bonifacio and 

Lugiato (2) found that the real part of ll,n may be positive for certain off- 

resonant modes (n ~ O) along part of the upper branch in absorptive bistability. 

The resulting instability leads sometimes to sustained periodic oscillations and 

sometimes to transient oscillations with eventual precipitation to the lower stable 

branch. No chaos has been reported. 

2. Dispersive systems - Ref. 5 

Perturbative solutions to Eq. (2.17) may be found in a similar fashion. Since 

this equation does not factor, its form in the mean-field limit is rather complicated. 

I will simply give the solutions: 

< r I + 2c 1 - i~ r x 2 ^[ = -i~ - ~ n ~ [(1+42) ( 2C )2 
lz,n n VI ~ 1 + X 1 - i@ +X l+X l-i~ +X 

n n 

n ) (2.23) 
(~ - A 1 +~ 1 - ic~ n ~ X 

n = O, ± i, ~ 2 .... 

As the polarisation has been eliminated a priori in Eq. (2.17) (requiring VI>>K,VII) 
^ 

no solutions for I% and ~5 are found. The solution for ~3 is the same as 

given in Eqs. (2.22) (but with F +~). Lugiato (5) did not eliminate the polarisation, 
A 

but the instability he found remains in Eq. (2.23). The real part of ll,n may be 
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positive for certain off-resonant modes along part of the upper branch in dispersive 

bistability, and also in systems which are not bistable. I have not seen a study of 

the oscillations which arise from this instability. 

INSTABILITIES IN THE MEAN'FIELD SINGLE-MODE LIMIT 

i. Dispersive systems - Ref. ii 

In Eqs. (2.22) the perturbative corrections to ~3,4 and ~5 involve a 

denominator exp(~ (0) YII Tr) - i. The mean-field single-mode limit has 

~I, Tr ~ (i - R) ÷ 0, and therefore [exp(~(0)~l T r) - i] ~ (i - R) ÷ 0. This 

cancels the explicit (i - R) dependence which in the mean-field multimode limit 

justified, self-consistently, the perturbative method used to calculate ~3,4 and 

~5" This perturbative method can no longer be applied (32) . Rather, we may introduce 

the mean-field limit in the characteristic equation as before, and also write 

^ 

(e ~Tr - i) = (e~Y,t Tr - i) % ~Y~I T r' 

but beyond that make no further simplification. We consider only the resonant mode 

as dn ~ (i - R) -I + ~ corresponding to the migration of all off-resonant modes to 

infinity. From Eq. (2.16) [via Eqs. (2.20)] we obtain a cubic and a quadratic in 

giving the five eigenvalues for the resonant cavity mode coupled to the medium. 

From Eq. (2.17) we obtain the cubic equation 

~3 + ~2 1 + X + 2 < (i + ) + 2(1 + X) 
YI~ i + X yl; 

2C I-X)+K Y I (~i z dY 
(i + I+----X I+X YI! X + (i + X) ~ = 0 (2.24) 

where Y/X and dY/dX refer to the familiar steady-state input-output relationship 

for the mean-field limit (29'33) . Again two eigenvalues are not found because 

Eq. (2.17) eliminates the polarisation a priori. Equation (2.24) corresponds to the 
(11) 

eigenvalue equation for the model studied by Lugiato et al. Applying the 

Hurwitz stability criterion (34) these authors found an instability along part of 

the upper branch in dispersive bistability. They report sustained periodic oscilla- 

tions, transient oscillations with eventual precipitation to the lower stable branch, 
(35) 

and period-doubling to chaos. 

2. Dispersive systems , the dispersive limit - Ref.10 

In the dispersive limit the incident laser is tuned far from the medium resonance 

so that the nonlinear absorption can be neglected. This implies the use of intensities 

low enough so as not to power broaden the homogeneous line significantly compared to 

this detuning. For X ~ 1 Eq. (2.24) reads 



75 

~3 + ~2(i + 2b) + ~[2b + b 2 + (X - Zo)2]+b ~ + (X - ZO)(3X - Zo) = 0 

(2.25) 

where I have defined 

b : ~ (i + C), z 0 : ~ (ca - ~), X : S~-- CAx . 
Yll Yu V. 

For this equation the Hurwitz stability criterion reproduces Eq. (4) from Ref. i0 

(in Ref. i0 the > should read <). There Ikeda and Akimoto found an instability 

leading to period-doubling and chaos along part of the upper branch in dispersive 
(n) 

bistability. This and the instability found by Lugiate et al. are probably not 

two distinct instabilities, i.e. they probably exist in a single connected region of 

parameter space. 

INSTABILITIES OUTSIDE THE MEAN-FIELD LIMIT 

i. Dispersive systems - Ref. 3 

Each of the final three instabilities is found with both the polarisation and 

inversion adiabatically eliminated (but without the mean-field limit so we require 

~T r >> i, ~ - YII or ~). Setting ~ << "~'l! in Eq. (2.17) gives a quadratic in 

exp(~Yll T r) : 
^ ^ 

i - 2BSe -~Y" Tr + B2e-2~, Tr = 0 , (2.26) 

whe re 

I~ss(L) I 1 + I~ss(O)l  = : ~ (. - 2) , 
l~.ss(O) l 1 ÷ l~ss(L) l 

(2.27) 

l + IEss(O)l = ~ (L) -i@ 
-- + l) Re( ss e ] 

: ~ (1 + l~ss(~)l ~ ~ss(°)  

1 + l~ss(°)l ~ ~ (L) ss e-iS ] 
+ A (  I = i )  Im [ ..,- ) 

1 + I~ss(L) Ess(0) 

Solutions are 
^ 1 
~½,n = -iSn - (~I! Tr)-I in ~ [S _+ (S 2 - l) ½] , (2.28) 

n = 0, ~ i, ± 2, ... 

The requirement for stability is that the real part of the logarithm be positive. 

This reproduces the condition for stability obtained from a description of cavity 

dynamics in terms of a mapping of the complex cavity field amplitude over successive 

round trips (3'31) Ikeda t3)" " found that this mapping may be unstable along part of 
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the upper branch in dispersive bistability. In terms of Eq. (2.28) the real part 

of the logarithm becomes negative and all of the modes corresponding to ~l,n' 

n = 0, ± i, ~ 2, ..., are simultaneously unstable. The instability leads to 

periodic oscillation, period-doubling, and chaos (3'35) 

2. Dispersive systems, the dispersive limit - Ref. 4 

In the dispersive limit, with IEss(Z) 12 << 1 and IEss(L) I 2 = exp(-dL)IEss(0)12 

(only linear absorption remains), the eigenvalues given by Eq. (2.28) have 

-~L/2 
B = Re 

S e~L/21Re ( (L) -i0) 1 _e-~L) e-i0) = Ess e + ~IEss(0) I 2(I Is 

E (0) E (0) 
SS SS 

(2.29) 

Again, from the equivalent mapping, Ikeda et al. (4) found regions of instability 

in dispersive bistability leading to periodic oscillation, period-doubling, and 

chaos (35) . This prediction of chaos has lead to experimental observations in a 

hybrid system (9) , and, more recently, in an all optical system (12) . As with the 

instabilities reported in Refs. (i0) and (ii), those reported in Refs. (3) and (4) 

are probably not distinct. 

3. Absorptiv e systems- Re f. 31 

For a purely absorptive medium 

as given in Eq. (2.27) and 

S = ..... + 
2B 

1 + IEss(L)I 2 

(A = 0) in a detuned cavity (@ ~ 0) B is 

i) Cos8 . (2.30) 

(31) 
A detailed analysis of stability based on the eigenvalues in Eq. (2.28) shows 

that for l@I < ~ (in particular @ = 0, a tuned cavity) absorptive bistability is 

possible; always with both the upper and lower branches stable. For ~ < I@I < 

(in particular 181 = ~, a fully detuned cavity) there is no bistability, but the 

real part of the logarithm in Eq. (2.28) may become negative. The resulting 

instability leads to a periodic oscillation with period 2T where the medium 
r 

oscillates between saturated and unsaturated states on successive round trips. There 

is no chaos. 

3. OPTICAL TRISTABILITY AND POLARISATION SWITCHING 

I will now turn the discussion from ordinary optical bistability to a system of 

two ring-cavity modes coupled via a nonlinear medium. In what I have called the 
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mean-field single-mode limit (there are now two single modes), and with the medium 

adiabatically eliminated, complex cavity field amplitudes El and E2 obey the 

coupled equations, 

K-I~I,2 = (i - R)-½ ei~TEl'2 [ + - - 1 I - El, 2 l i~l,2 i(l R) -I kl'2L 
2 XI,2 

(3.1) 
where XI and X2 are nonlinear susceptibilities and all other quantities are 

obvious generalisations of those previously defined. There are now two cavity outputs 

1,2 ei~T (3.2) 
E T = (i - R) ½ El, 2 

Each of the systems discussed in this and the following two sections uses a different 

nonlinear medium and therefore different X'S. 

In this first example the nonlinear interaction takes place via a J = ½ to 

J = ½ transition (Fig. i). A linearly polarised field of frequency ~0 and 

amplitude E I (E/ = E~ = EI//2 ) is incident at the cavity input and the cavity 

field is composed of two circularly polarised components: 

÷ 1 [ ÷ ÷ ] e-i(~0t - k0z) E(z,t) = -- El(t)e + + E2(t)e + c.c. , (3.3) 
/~ 

| 

Figure 1: Energy level diagram for J = ½ to J = ½ transition. 
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where $ = (~ ± iy)//2 are unit vectors. In Fig. i TI and Tl' are relaxation 

times for the excited state population; T2 is the relaxation time for the atomic 

dipole coherences TI and T I' are relaxation times for the population differences 

between ground and excited state magnetic sublevels; and ~ = ~ - ~0 = A/T2. a 

Atomic density matrix element equations for this system are solved by Sandle and 

Hamilton elsewhere in this volume, and Hamilton et al. (42) have analysed the resulting 

steady states in the purely absorptive case. I will go directly to the steady state 

result. It will be convenient to introduce the dimensionless field amplitudes 

E~, 2 = (2 1~1,~) T2( + ) -1 / (1  + A2)z 

El = (i- R) -½ ei~T(2~3 2- [~I/~h)[ T2(I + T~)-I/(I+A2)zI½ El 
T! /~ 

(3.4) 

where ~ is the reduced atomic dipole matrix element and 

1 1 )-~/~-I (i 1 1 2 1 1 
z = (w ÷T~ ~+--+ )( ÷-÷ ) ~ -- ~, T-F ~ T~ T~' 

(3.5) 

There are two nonzero atomic coherences which define the polarisations PI,2 and 

the susceptibilities XI,2 = ~ Pi,2/e0 El, 2 . In addition to the population 

differences DI, 2 between.~the radiatively coupled levels, if the cavity field is 

not linearly polarised (IEII 2 ~ IE212) nonzero population differences D and ' g 

D arise between the ground and excited state magnetic sublevels. In the steady 
e 

state 
N 
v 

E2,1 2) , , Ol, 2 = - V c l + l  I s ( l ~ l  ~ I~1~)  -~ 

and 

where 

N 
v 1 1 1 1 

o ( ~ +  - - +  - - 3 - ~ ( 1 ~ 1  ~ - I ~ l ~ ) s ( l ~ l  ~, I~=1~) -~ g 2 Tl TI' TI' 
(3.6) 

N 
D v r l_!__ 1 1 1 1 ~-I ~ 
e = --~ kTl ' + ~ ) [ ~ - i  + -- + TI 'J (IE212 - IEII2)S(IEII2'IE212)'I 

TI' TI' 

×1,2 = i (k0~)-~ ~ Cl - iA) (1  + 1~2,11=)~(1~1 ~, I~=1~) -~,  

1 
s ( l ~ l  =, I ~ 1  =) = 1 + ~ c1 + z ) ( l ~ l  ~ + I ~ 1  ~) + z l ~ , l ~ l ~ l  ~ 

<-1) The coupled field equations are then (with time measured in units of 

El,2 

(3.7) 

(3.8) 

= ~ - ~ l , ~ I1  ÷ i~ ÷ C C l -  iA~(~ ÷ l ~ , l n ~ ) ~ ( l ~ t  ~, I ~ 1 ~ ) - ~  1 . 

(3.9) 
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Steady-state solutions to Eq. (3.9) are given in Fig. 2 where the mode intensities 

XI, 2 = IEI,212 are plotted against the incident intensity Y = IE112 for fixed values 

of C, A, ~, and z. The three-dimensional plots are an aid to understanding the 

projections Xl 2 v Y. The special case z = 1 (Fig. 2(a)) is particularly instruc- 

tive. Here S(IEII 2, ]E212) factorises and Eqs. (3.9) decouple to give two indepen- 

dent state equations 

E c i 
= ÷ (* 1 ÷ Xl,2 Y Xl, 2 (1 + 1 + Xl,  2 

Each mode satisfies the familiar cubic bistability equation (32'36) and the projections 

Xl, 2 v Y are the familiar S-shaped curves. However, in three dimensions, what is 

a bistable region for Xl and X2 individually is in fact a region of quadra- 

stability. There are two stable symmetric branches (linear polarisation) with Xl 

and X2 both in either high transmission or low transmission states, and two stable 

asymmetric branches (elliptical polarisation) with Xl in high transmission and X2 

in low transmission, or visa versa. In Fig. 2(a) the loop of asymmetric solutions 

is such that it overlaps the symmetric curve in projections on the (Xl,2, Y) planes. 

Fig. 2(b) shows how this loop moves as z is changed so that both the symmetric and 

asymmetric branches are apparent in these projections. In this figure the point C 

marks the bifurcation to optical tristability predicted by Kitano et al. (22) and 

recently observed (23'24) - one stable symmetric branch and two stable asymmetric 

branches. Our inclusion of saturation in the present model brings the added structure 

for higher incident intensities. 

with the inclusion of saturation it is also possible for the asymmetric branches 

to become unstable (13) . I will not discuss the stability analysis itself. It simply 

involves the application of standard techniques to a set of four ordinary differential 

equations (Eqs. (3.9)) and the numerical solution of a quartic equation for the 

eigenvalues. Figure 3 shows the unstable region as a function of Y for C = 4, 

= 5,~ = 15, and z = 0.03. Over a significant range of Y both the symmetric and 

asymmetric steady states are unstable and some form of oscillation must occur. I 

will spend the rest of my time on this system discussing the oscillations which are 

found by solving Eqs. (2.9) numerically. 

The solutions to Eqs. (2.9) may be traced as trajectories in a four-dimensional 

phase space. I will illustrate the solutions found in the long-time limit by 

projections of these trajectories onto a plane; plotting the intensity X2(t) versus 

the intensity Xl(t) to obtain a curve parametrised by t. A periodic oscillation 

Xl,2(t + T) = Xl,2(t) is represented by a closed curve (limit cycle), and an 

aperiodic oscillation by a curve which never retraces itself. In four dimensions the 

trajectories do not cross, but there is no such restriction on their projections. In 

the range 145 ~ y ~ 170 periodic oscillations period-doubling, and chaos are all 

observed (13). For the upper part of this range these are illustrated in Figs. 4-7 
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Yr ....... 

(b) ~ I//'I ~ I 
,' J 

(~.9): Figure 2: Steady-state solutions to Eqs. 

(a) z = I, (b) z = 0.3 Solid (dashed) curves are stable (unstable) 

20 

,e 
10 

00 200 400 
g 

Figure 3: Steady,state solutions to Eqs. (3.9) for C = 4, A = 5, ~ = 15 
and z = 0.03. Solid (dashed) curves are stable (unstable). 
The inset shows the region of tristability. (22) 

and I intend to concentrate on these examples. However, first I will briefly describe 

the situation as Y is increased from Y < 145 where initially the system will be 

on one or other of the two stable asymmetric branches (Fig. 3). 

At Y ~ 145 both of the asymmetric branches become unstable via a Hopf 

bifurcation - the real part of a pair of complex eigenvalues changes sign, from 

negative to positive. Technically, it should be proved whether these are super- 

critical or subcritical bifurcations. That is to say, does a stable limit cycle 

exist beyond the bifurcation point which contracts onto the asymmetric steady state 

as Y decreases, or does an unstable limit cycle exist before the bifurcation point 

which contracts onto the asymmetric steady state as Y increases? The mathematical 
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12 

x~ 

Figure 4: A symmetric limit cycle (solid curve) at Y = 170 has bifurcated to a 

pair of asymmetric cycles (dashed curve and its reflection about 

Xz ~ X2) at Y -- 166. 

12 

Xl 

X2 

Figure 5: Each asymmetric cycle period-doubles to chaos: period two at Y = 165, 

i) period four at Y = 164.9, ii) period eight at Y = 164.88, 

iii) chaos at Y = 164.8. 
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3 
3 6 9 12 

X1 

Figure 6: A symmetric chaotic attractor at Y = 163.7. 

techniques which enable us to answer this question are described and illustrated by 
(36) 

Mandel elsewhere in this volume I will not carry out such an analysis for this 

example but simply rely in what follows on numerical evidence derived from a long- 

time integration of Eqs. (2.9). Beyond the bifurcation point (Y ~ 145) this evidence 

suggests that a stable limit cycle exists around each of the unstable asymmetric 

steady states. These cycles grow with increasing Y, until for Y = 152 they become 

unstable and the long-time trajectories wind onto a 'chaotic figure eight' encircling 

both unstable asymmetric steady states. A chaotic attractor is observed qualitatively 

similar to that illustrated in Fig. 6. If Y is now decreased the chaotic behaviour 

persists until at Y ~ 149 the long-time trajectories return to one or other of the 

stable limit cycles. In summary, for 149 ~ Y ~ 152 there is a hysteresis involving 

the coexistence of stable limit cycles about each of the unstable asymmetric steady 

states and a chaotic attractor encircling both. This is reminiscent of a similar 
.. (37) 

hysteresis observed as a function of Rayleigh number in the Lorenz equa~lons 

Returning now to Figs. 4-7, these illustrate the interesting bifurcation 

structure which unfolds as Y is decreased from Y = 170. This initial value of Y 

is beyond the value over which chaos is observed and a stable limit cycle exists in 

the shape of a symmetric figure eight (Fig. 4). The bifurcations to chaos from this 

symmetric cycle are illustrated in Figs. 4-6: 

(i) The symmetric cycle becomes unstable and is replaced by two asymmetric cycles 

(Fig. 4). 

(2) The asymmetric cycles period-double to chaos to form coexisting asymmetric 

chaotic attractors (Fig. 5). 

(3) The two asymmetric chaotic attractors merge on a single symmetric chaotic 

attractor (Fig. 6). 
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This behaviour has also been seen in the Lorenz equations as the Rayleigh number is 

descresed ~38)" . It appears however, that it is not the last word on this route to 

chaos. As Y is decreased further a new stable limit cycle appears, looking very 

like a superposition of the two asymmetric cycles previously observed. This new 

symmetric cycle bifurcates to chaos as before. Then in a second periodic window, 

and a third, the same bifurcations from a syrmnetric limit cycle to chaos occur. 

These observations have led myself, Savage, and Walls (13) to suggest that this is the 

beginning of an infinite sequence of periodic windows based on a sequence of syrm~.etric 

cycles which are related via a period-doubling of a new type. The first four cycles 

in this sequence are plotted in Fig. 7. We expect this new period-doubling sequence 

to occur in other systems which possess a symmetry like the reflection symmetry in 

Eqs. (2.9). The Lorenz equations provide one such example, and indeed, there the 

same sequence does occur. The symmetric cycles corresponding to those in Fig. 7 are 

plotted for the Lorenz equations in Fig. 8. In further support of our suggestion I 

conclude this section with reference to a recent paper where what appears to be the 

same period-doubling sequence has been analysed in a one-dimensional mapping with 
(28) 

two extrema 

(a) (b) 

(c) ) 

Figure 7: Four symmetric cycles in the proposed new period-doubling sequence: 

(a) Y = 170, (b) Y = 163.6, (c) Y = 161.0, (d) Y = 160.88. 
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(a) 

Figure 8: Four symmetric cycles from the Lorenz equations corresponding to the 

sequence in Fig. 7. s = 5, b = 1: (a) r = 250, (b) r = 126.1, 

(c) r = 105.5, (d) r = 103.2. 

4. TWO-PHOTON OPTICAL BISTABILITY AND TRISTABILITY 

In this second example of Eqs. (3.1) two ring-cavity modes with degenerate 

frequencies w 0 interact via a two-photon transition with resonant frequency ~ . a 

Both modes are excited by incident fields with an amplitude E . It is convenient 
I 

to introduce the dimensionless amplitudes 

= El,  2 
(4.1) 

EI (I R) ½ ei~T'2 K ½ = - , I ffi) (Vll Y~) -~ E I, 

where Yi! and y~ are phenomenological damping rates, and 

2 
K = ~ ~ ~gjUje/(~jg - ~0) 

] 

where ~g'] ~e] and ~'3g are dipole moments and resonant frequencies for single- 

photon transitions between the ground and excited states and the intermediate state 

lj >. From a standard calculation of two-photon susceptibilities (39) it follows that 

the mode amplitudes satisfy the equations (time is measured in units of K -l) 
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EZ'2 = EI- EI,2 <i + i~ + 2C[I- id(l~.iI 2, IEzlZ)IIE2,1[2S(IEll 2, IE212) -I 

-i~2cr[ 1 + d(l~z[ 2, I~212)21 s(l~zl 2, I~212)-z} , (4•2) 

with 

~(I~iI 2, ]~212) = ~ + ~ (I~iI 2 + I~2] ~) 

s(I~l ~, I~] ~) = 1 + 6(l~f ~, I~] ~) + [~I~]~21 ~ 

(4.3) 

where ~ and F are as previously defined; A = (~ - w0)/y~; C a 

before in terms of the resonant two-photon absorption coefficient 

and 

is defined as 

= (k0Nvlkl/e0r~)' ' ; 

~jgl ~ '  [2 ~je ) (4.4) = ( h l K I ) - l r - ½  [(I. 2 ~ .  23g_ ~02 + I~ je  ~.  2 - ~ 0 2  
j jg je 

is the Stark coefficient. 

without Stark effects (6 = 0) Hermann (40) has predicted periodic self-oscillations 

in this system, but no chaos• With the inclusion of Stark terms an instability 

leading to periodic oscillation, period-doubling, and chaos has been predicted by 

Parriger et al. (14) Figures 9 and i0 are due to these authors. In Fig. 9 steady- 

state intensities XI, 2 are plotted against the incident intensity Y for fixed 

values of C, A: 4, and F, and for both a small Stark coefficient ~ = 0.i (Fig. 9(a)) 

and a large Stark coefficient ~ = 1.4 (Fig. 9(b)). For both values of ~ a pitchfork 

bifurcation to a pair of asymmetric branches occurs• In Fig. 9(a) the asymmetric 

branches are always stable, while in Fig. 9(b) they become unstable via a Hopf 

bifurcation in the manner of the previous example. Figure i0 illustrates the occurence 

of period-doubling and chaos• 

5. SECOND HARMONIC GENERATION 

In a third and final example of Eqs. (3.1) I consider a ring cavity mode with 

frequency ~0 interacting with its second harmonic via a second order susceptibility 
(2) 

X Only the fundamental frequency is incident on the cavity input and I will assume 

that both the fundamental and the second harmonic are equally detuned from the cavity 

resonance. If El and E2 are the complex amplitudes for fundamental and second 

harmonic waves, respectively, with an appropriate scaling they satisfy the equations 

E1 = E - E l ( 1  + i~)  + El*E2 , I 
(5.1) 

E2 = -E2(I + i¢) - 2EI 2. 
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1o 
Y 

X,(X2) 
#/* 

' ' I'0 
Y 

Steady-state solutions to Eqs. (4.2) for C = 2, A = -10, ~ = O, 

r ~ 0.5, and (a) ~ = 0.1, (b) ~ = 1.4. Solid curves are stable. 

Dashed and dotted curves are ~qstablel 

( 

(c) (d) 

Figure 10: Period-doubling in Eqs. (4.2) for the parameters of Fig. 9: 

(a) Y = 8.2, (b) period two at Y = 8.4, (c) period four at Y ~ 8.32, 

(d) chaos at Y = 8.25. 
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IE~l 

(b) 
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50.0 0 .0  50.0 

Time Time 
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I£,I 

(c) (d) 
1'00. 0 I'~.0 50.0  50.0 

Time Time 

Figure 11: Period-doubling in Eqs. (5.1) for ~ = 1: (a) Y = 6.0, (b) period 

two at Y = 6.5, (c) period four at Y = 6.95, (d) chaos at Y = 7.5 

McNeil et al. (27) have shown that with ~ = 0 Eqs. (5.2) may produce periodic 

oscillations, and Mandel and Erneux (36) have shown these to be stable. However, with 

= 0 period-doubling and chaos have not been found, with the inclusion of a nonzero 

(41) 
cavity detuning period-doubling to chaos can occur as illustrated in Fig. ii. 
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SPONTANEOUS PULSATIONS IN LASERS 

Lee W. Casperson 
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I. INTRODUCTION 

Although lasers and related devices have now been in wide use for over two 

decades, it cannot yet be said that all aspects of laser operation are well 

understood. New laser lines and designs are often found by trial and error, and 

the literature abounds with interesting experimental observations relating to 

lasers that have never been interpreted convincingly in terms of theoretical 

models. Conversely, some of the theoretical literature that ostensibly relates 

to lasers can never be confirmed by means of laboratory experiments. The purpose 

of this paper is to provide an overview of a specific laser-related topic which 

has been discussed in the literature since the earliest days of laser physics, 

but which has been attracting greatly increased attention within the last year. 

This topic involves the spontaneous coherent pulsations that sometimes occur in 

laser oscillators even when all of the usual destabilizing mechanisms (saturable 

absorption, multiple modes, etc.,) are believed to be absent. Besides providing 

an overview of this topic, the paper also reports the first quantitative agree- 

ment that has been obtained between theory and experiment. 

Because research on the topic of spontaneous coherent pulsations in lasers 

has occurred at a low level over such a long period of time, it is easy for a 

researcher to be unaware of previous studies in this field. However, the subject 

has now matured sufficiently that it is important to establish a proper histori- 

cal perspective. Section 2 of this paper includes a brief historical survey of 

the early research relating to pulsations in homogeneously broadened lasers. The 

subject is continued in Section 3 with a review of experimental and theoretical 

developments that relate to inhomogeneously broadened lasers including especially 

the most recent theoretical results. The author is fully aware of the futility 

of trying to prepare a complete discussion of earlier work on this or any other 

topic, and he apologizes in advance for any references that are neglected or 

misrepresented. For conciseness only the previous work on semiclassical 
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instabilities in ordinary single-mode lasers is considered, and the vast related 

literature on rate equation instabilities, mode-locklng, blstabillty, chaos, 

etc., is largely ignored. 

II. HOMDGENEOUSLY BROADENED LASERS 

The study of spontaneous coherent pulsations in laser oscillators is almost 

as old as the study of lasers themselves. Thus, for example, a classic prophetic 

study of the requirements and properties of cw laser oscillators was conducted 

by Schawlow and Townes and published in 1958 [I]. But at the same time, other 

researchers were already investigating the possibility of coherent instabilities 

when a two level system interacts with an electromagnetic field. In this section 

and the next, we review briefly some of the studies since 1958 that relate to the 

concept of spontaneous pulsations in lasers. 

Among the earliest studies of maser transients were those carried out by 

the Russian authors Khaldre and Khokhlov (1958) [2], Gurtovnik (1958) [3], and 

Orayevskly (1959) [4]. These authors derived time dependent equations governing 

the interaction of a system of molecules with the electromagnetic cavity mode of 

a maser oscillator. The equations were then examined for various kinds of tran- 

sient solutions, and the conditions for spontaneous instabilities were derived 

[3]. The immediate purpose of those studies seems to have been to explain and 

predict any time dependent phenomena that might be observed in molecular beam 

masers such as the ammonia maser [5]. 

The next major advance toward the understanding of laser instabilities was, 

of course, the experimental demonstration of the first laser. Operation of the 

first laser was reported by Maiman in 1960 at Hughes Research Laboratory in Cali- 

fornia [6]. That laser was based on a flashlamp pumped ruby light amplifier, and 

this choice of material provided an early impetus for the study of spontaneous 

pulsations. Even with very gently varying pump pulses ruby lasers tend to pro- 

duce their outputs in the form of a train of spikes. Usually the spikes appear 

to be quite random in nature, but under some conditions regular damped pulsations 

can also be observed. Theoreticians were busy for several years trying to iden- 

tify the cause of this spiking behavior, and one idea figuring prominently in 

their discussions involved the possibility of some fundamental instability in the 

laser equations. The pulsations were, of course, not unique to the ruby system, 

and similar effects were observed with the majority of solid lasers. 

In 1960 Statz and DeMars developed a set of rate equations governing the 

interaction of the laser atoms with an electromagnetic field [7]. These equa- 

tions were found to predict damped relaxation oscillations, and similar results 

were obtained by Dunsmuir in 1961 [8]. However, it soon became apparent that the 

rate equation approach to laser oscillation could not actually predict 
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instabilities, and this point was also studied in detail by Makhov [9] and hy 

Sinnett [10] in 1962. It was then tempting to assume that the spiking must 

somehow be a consequence of the transient nature of the pumping. But in 1962 

Nelson and Boyle reported the observation of undamped pulsations in a ruby laser 

system with cw pumping [Ii], and since that time there have been dozens of 

reports of similar pulsations in cw pumped solid, liquid, and gas laser sys- 

tems. Hence, it became obvious that the Statz and DeMars rate equations by them- 

selves were not capable of explaining many of the observed pulsation phenomena. 

Singer and Wang in 1961 were the first to point out explicitly that the 

observed laser spiking might be due to fundamental coherent nonlinearities in the 

laser equations [12]. Related arguments were formulated by Pao in 1962 [13]. A 

comprehensive study of laser transients was given by Tang in 1963 using essen- 

tially the same techniques and semiclasslcal density matrix equations that are 

still used in rigorous laser studies [14]. In a simplified and normalized form, 

these equations can be written: 

d__PP = _ y(p + Ar) (I) 
dt 

dr 
d--~ = - Yl (r - ro -AP), (2) 

d_~A 
=- Y(A+e) (3) dt 

where P is the normalized polarization (related to the off-diagonal elements of 

the density matrix), r is the threshold parameter measuring the population inver- 

sion compared to its value at threshold (r = i), r represents the pump rate, A 
o 

is the normalized electric field amplitude, and the normalizations have been 

chosen to include the numerous physical constants and coefficients of the laser 

medium and cavity. The polarization decay rate y is the reciprocal of the coher- 

ence time (or transverse relaxation time), Yl is the inversion decay rate (or 

longitudinal relaxation time), and Yc is the decay rate of the electric field in 

the laser cavity. 

Tang showed that in the limit where the polarization decay rate is large 

compared to the cavity and inversion decay rates (y>>yc yl) the semiclasslcal 

equations reduce to the stable Statz and DeMars rate equations. In this limit 

the derivative in Eq.(1) may be neglected yielding P = - Ar, and with this sub- 

stitution Eqs. (2) and (3) can be written: 

dr 
d--~ = - Yl(r - r ° + rl), (4) 
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dI 
- - 2YcI(I - r), (5) dt 

where I = A 2 is a normalized intensity. These are, of course, the usual rate 

equations~ and their stability can be verified by linearizatlon and use of 

Liapounoff's second method [15]. In a second limit, where the cavity decay rate 

is large compared to the polarization and inversion decay rates (yc>>Yl,y) the 

semlclasslcal equations reduce to another stable equation set. In this limit, 

the derivative in Eq. (3) may be neglected yielding P = - A, and with this sub- 

stitution Eqs. (i) and (2) can be written: 

dr=_ 
dt Yl (r - ro + I), (6) 

d__~I = _ 2yl(l - r). (7) 
dt 

The stability of these equations can also be readily verified. As discussed 

below, it was left for other researchers to discover that for cases intermediate 

between the limits described by Tang, Eqs. (I) to (3) actually do possess a 

region of instability. 

Following the ideas of Singer and Wang, Uspenskly was able in 1963 to 

demonstrate an instability in a somewhat simplified model of the ruby laser [16]. 

This model was superior to the rate equation treatments in the sense that it per- 

mitted the polarization to not depend instantaneously on the value of the elec- 

tric field. Thus it is a coherent model and the first that could be applied 

specifically to the problem of spontaneous pulsations in lasers. However, 

because of the somewhat obsolete formulation of the problem, Uspenskly's stabil- 

ity criteria are not reproduced here. 

The next important development in the subject of semlclassical laser insta- 

bilities was the publication in 1964 of a series of much more general analyses by 

Korobkin, Uspenskly, Grasyuk, and Orayevskiy [17-20]. In these papers, the 

authors have extended the earlier analyses of coherent instabilities in maser 

oscillators and tested the results against experimental data obtained with ruby 

lasers. Stability criteria were also derived which enable one to determine in 

advance whether a laser characterized by particular pump rates and decay life- 

times will exhibit spontaneous coherent pulsations. The most fundamental of 

these criteria can be written in the notation of Eqs. (I) to (3) as: 

yc>Yl + y. (8) 

If this condition is not satisfied, no instability is possible. 

(8) 

Korobkin, Uspenskiy, Grasyuk, and Orayevskiy also showed that even when Eq. 

is satisfied there is still a minimum level of pumping that is necessary in 
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order for the instability to be observed. In the notation of Eqs. (i) to (3) the 

condition they derived is: 

(Y + Yl + Ye )(y + Ye ) 
r >I+ 
o Y(Yc - y - Yl ) (9) 

To avoid confusion, it may also be noted that in the extreme limit of Eq. (8) 

(Yc>>Y I + >3, which is essentially one of the cases found by Tang to be stable 

[14], the pump level necessary to observe the instability becomes infinite. 

Another major development reported in 1964 was the first numerical solution 

of the semielassieal laser equations by Buley and Cummings [21]. These authors 

found that under low loss conditions the equations predict damped pulsations. On 

the other hand, with high cavity loss the equations were found to yield undamped 

pulsations, and this behavior agrees with the instabilities predicted in the ear- 

lier analytical treatments. It is especially notable that the undamped pulsa- 

tions found by Buley and Cummings were of two basic types. Under some conditions 

the pulses were periodic, while for operation far above threshold a series of 

"almost random" spikes was obtained. These were the first direct theoretical 

observations of periodic and chaotic pulsations in homogeneously broadened 

lasers. Much of the research in this field since 1964 can be regarded as clarif- 

ications, physical interpretations, and extensions of the basic stability cri- 

teria and pulsation effects which had by then already been discovered. 

Detailed studies of the effects of spontaneous emission noise on laser 

intensity and phase fluctuations were reported in 1966 by Haken [22] and by 

Risken, Schmid, and Weidlich [23]. Among other things these studies showed that 

for some operating conditions undamped pulsations should be obtainable, and the 

resulting stability criteria were similar to those obtained by Korobkin, Uspen- 

skiy, Grasyuk, and Orayevskly. The exact forms in which Eqs. (8) and (9) are 

written were first given by Risken, Schmid, and Weidlleh. 

It is of interest to regard the cavity loss rate Yc in Eq. (9) as an adju- 

stable parameter and to derive the minimum possible value of the pump rate for 

instabilities to be observed. If the derivative of ro with respect to Yc is set 

equal to zero, one finds that the optimum value of the cavity loss rate is: 

Yc = y + Yl + (4 y2 + 6 y Yl + 2 y2)i/2, (I0) 

and the corresponding value of the minimum pump rate is: 

ro>5 + 37+ 2 + 6-~+ 2 -- 
(il) 
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The stability criterion given in Eq. (II) was derived in other ways by Risken and 

Nummedal [2~,25] and by Graham and Haken [26], but this result was not neces- 

sarily considered to be dependent on the earlier stability conditions. 

As mentioned above, Buley and Cummings had remarked briefly in 1964 that 

for operation far above threshold the semiclasslcal laser equations predict the 

possibility of undamped chaotic pulsations. This fact wasn't fully appreciated 

until 1975 when Haken demonstrated the mathematical equivalence of the laser 

equations and the simplified Boussinesq equations of fluid mechanics [27]. That 

fluid convection possesses chaotic solutions is obvious to anyone who has heated 

a pot of water, and the mathematical conditions relating to such solutions had 

been investigated by Lorenz [28]. 

During the late seventies, there were several studies of laser stability, 

but for the most part, these works emphasized spontaneous mode locking [29-32]. 

Detailed numerical solutions of the laser equations were reported by Mayr, 

Risken, and Vollmer in 1981 including especially a discussion of chaotic solu- 

tions [33]. Other studies have related laser instabilities and chaos to similar 

behavior in chemical reactions, thermodynamics, nonlinear optics, and more com- 

plex optical structures [34]. Since Carmlchael will be discussing some of these 

topics in detail at this symposium it is unnecessary to pursue them further here. 

Very recently there has been an increased level of research relating 

directly to laser instabilities, and though our consideration of this material 

will necessarily soon be obsolete, a few items may be mentioned. In 1981, Zorell 

extended the results of Risken and Nummedal to include the effects of tuning away 

from line center [35]. It was found that higher pumping levels are required to 

achieve spontaneous pulsations in a detuned laser. In 1982 Minden and Casperson 

[36] and }{endow and Sargent [37] showed explicitly that in the homogeneous limit 

a frequency domain stability test employed by Casperson [38,39] yields the same 

results as earlier perturbational methods. Hendow and Sargent also introduced 

the claim that pulsations of one of the three quantities of interest (polariza- 

tion, population, field), namely the population, cause the laser instabilities 

[37]. It may be noticed, however, that these three quantities have equal status 

in Eqs.(1) to (3), and pulsations of all of them accompany any instability. (The 

reader may easily demonstrate that if any one of P,A, and r is replaced by its ew 

value in Eqs. (I) to (3) the instability is eliminated.) No corresponding sugges- 

tion has been made yet for a single dependent variable in the other physical sys- 

tems which exhibit similar instabilities. Hendow and Sargent have also examined 

the effects on instabilities of tuning away from llne center [40], but the rela- 

tionship of these results to Zorrell's study remains to be clarified. In a 

surprising development, Lawandy has recently claimed that the stable Eqs. (4) and 

(5) can actually be unstable, and that the implications of this result are in 
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agreement with the observed instabilities in CH3F lasers [41]. 

As a final observation relating to spontaneous pulsations in homogeneously 

broadened lasers, it is important to indicate how these numerous theoretical stu- 

dies relate to practical experiments. The original motivation behind the 

development of the semiclassical models was, after all, the experimental observa- 

tion of spontaneous pulsations in ruby lasers and others. Unfortunately, the 

practical usefulness of the theoretical results is highly doubtful, and sometimes 

authors admit that "conditions are not realized for the existence of these solu- 

tions" [42]. First of all, very few lasers are known which satisfy Eq. (8), and 

a partial llst is given in Section III of this paper. If the cavity loss rate in 

such a laser could be adjusted to satisfy Eq. (I0), it is still doubtful that the 

pump rate threshold of Eq. (II) could be reached. Even in the most favorable 

circumstance that the inversion decay rate is much less than the polarization 

decay rate (y>>yl) an unsaturated threshold parameter to>9 is clearly required, 

and in the twenty years that these concepts have been known no laser has been 

found which satisfies the necessary criteria. Thus, for the time being it must 

be acknowledged that the fascinating models of semielassical spontaneous pulsa- 

tions in homogeneously broadened lasers do not have practical applications. As 

will be seen below, the situation is very different with inhomogeneous broaden- 

ing. 

III. INHOMDGENEOUS BROADENING 

Most of the studies of laser instabilities that have been mentioned so far 

in this overview have been concerned primarily or exclusively with lasers that 

are homogeneously broadened. However, almost from the first studies of He-Ne 

lasers in 1961 [43], it has been recognized that the saturation characteristics 

of inhomogeneously broadened lasers might be substantially different and could 

lead to striking new types of laser behavior. In 1962, Bennett introduced to 

laser studies the concept of spectral hole burning and showed that the glitches 

on the dispersion curve that are associated with the gain holes can lead to 

important but marvelously complicated new spectral effects [44]. The first 

comprehensive semiclasslcal model of inhomogeneously broadened lasers was given 

by Lamb in 1964 [45]. However, a stability analysis of Lamb's model was not car- 

ried out until very recently. 

The first investigation of spontaneous pulsations in Inhomogeneously 

broadened lasers seems to have been that of Yakubovieh in 1969 [46]. In that 

work it was shown that intensity pulsations are possible if the initial inhomo- 

geneous spectral distribution has two peaks. In a somewhat related analysis, 

Idlatulin and Uspenskly investigated the stability of a laser system containing 

two discrete spectral classes of atoms [47]. While these results are 



95 

interesting, they do not correspond directly to any practical laser systems. 

In 1969, in the course of his thesis research, the author discovered that 

under some conditions, a ew high-gain single-mode xenon laser operating at 3.51 

microns produces its output in the form of an infinite train of pulses. In some 

circumstances, these pulses occur periodically with the individual pulses pos- 

sessing a remarkably complex structure. Under other conditions, the pulses 

alternate in height or are aperiodic having a broadband nolselike frequency spec- 

trum. Although considerable effort was expended, the author was unable to find 

an adequate explanation for the pulsation effects, and the first published 

descriptions of this work appeared in 1971 and 1972 [48,49]. The two principal 

theoretical models that had been separately explored involved coherence effects 

and the effects of inhomogeneous broadening. It was observed, however, that the 

models could be generalized to simultaneously "include both inhomogeneous 

broadening and a finite coherence time, but the mathematics would be more compli- 

cated" [48]. It wasn't discovered until later that the combination of inhomo- 

geneous broadening and a long coherence time actually result in the experimen- 

tally observed instability. 

As will be shown below, another related discovery of the same era was to 

play an important part in the eventual interpretation of spontaneous pulsation 

data. It was found that in a highly dispersive laser medium several frequencies 

can exist, all having the same wavelength, and this effect was termed "mode 

splitting" [48,50]. The author isn't aware that the pulsation effect attracted 

much attention from other quarters, but nevertheless he spent many leisure hours 

over the next several years investigating ever more complex and obscure models 

that might account for this instability. These efforts culminated with the 

discovery that Lamb's semiclassical equations have a low threshold instability 

and that a direct numerical solution produces pulses which in a qualitative way 

possess all of the properties of the experimentally observed pulses. The 

details of this work were published in 1978 [51]. 

Most of the author's experiments were carried out using a laser discharge 

that was I.I m in length and 5.5 ~ in diameter with a gas pressure of about 

5x10 -3 torr. Some typical early experimental results are represented in Fig. I. 

The curve in Fig. le is the frequency domain version of the 2.5 MHz repetition 

rate pulsations shown in Fig. l.a. The main pulses are usually followed by 

weaker echo pulses, and the example in Fig. la is typical. Under some condi- 

tions, the successive dominant pulses alternate in height as shown in Fig. 1.b, 

and this effect has since come to be called period doubling. Under other condi- 

tions the output appears noiselike, and a typical frequency spectrum correspond- 

ing to this behavior is shown in Fig. id. The output is actually not random in 

this case, and in modern terminology, the results might be termed optical chaos. 
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Fig. I: 
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Experimental plots of the pulsation instability for (a) a 

discharge current of 40 ma and (b) a discharge current of 

50 ma. Period doubling is evident in (b) as the inten- 

sity alternates between successive bursts. Part Cc) shows 

the frequency spectrum corresponding to part (a), and part 

(d) is the frequency spectrum for the chaotic output 

observed with a current of 70 ma. 

The most general formalism that is usually needed to model the effects Just 

described consists of the density matrix equations for the active medium coupled 

to Maxwell's wave equation for the electric field. These equations were dis- 

cussed thoroughly by Lamb [45], and a useful simplification was introduced by 

Feldman and Feld [52]. The equations form a complete set from which the time and 

space dependences of the electric field can be determined, subject to the boun- 

dary conditions at the resonator mirrors. In their most general form, these 

equations allow for a distribution of velocities (Doppler broadening) and a dis- 

tribution of natural center frequencies (isotope shifts, hyperfine splitting, 

Stark broadening, etc.), and hence they apply to quite arbitrary inhomogeneously 

broadened laser media [39]. In the past few years, various techniques have been 

used to investigate these equations as they apply to spontaneous pulsations in 

lasers. As mentioned above, direct numerical integration was first reported in 

1978 [51]. A typical result for the amplitude and intensity fluctuations in a 

periodically pulsing standing wave xenon laser are shown in Fig. 2. It can be 

seen from the figure that each major pulse is followed by a damped train of 

secondary pulses, and this behavior is common to most laboratory and numerical 

experiments. Figure 2 also illustrates the effect known as period doubling in 

which succeeding pulses alternate in amplitude. 

While the intensity is pulsing the atomic populations are also exhibiting 

rapid fluctuations [51]. In Fig. 3 is a plot of the frequency dependent popula- 

tion differences ~aa - ~bb at the instant of time t = 0.55 ~s in Fig. 2. This 

difference is normalized to a line center value of unity, and frequency is meas- 
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Fig. 2: Theoretical plots of the pulsation 

instability in a xenon laser. The 

normalized field amplitude is repre- 

sented by A, and I = A 2 is the normal- 

ized intensity. This ~s an example of 

period doubling, in which the pulse 

shape alternates between successive 

pulses. 
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Fig. 3 : Normalized population difference as a 

function of normalized frequency at the 

time t = 0.55 microseconds for the popu- 

lation pulsations associated with Fig. 2. 

The dashed line is the population dif- 

ference that would result in the absen:ce 

of saturating fields. 

ured in the normalized units x = 2(~- ~o)/ /~ ~D" This figure thus represents a 

snapshot of the pulsing population difference, and for comparison, the unsa- 

turated Gausslan population is shown as a dashed line. The dips away from llne 

center are associated with the Fourier components of the high frequency secondary 

pulsations. At increased excitation levels the population difference also 

develops a time dependent fine structure having minima at frequencies correspond- 

ing to harmonics of the fundamental repetition frequency. 

While brute force numerical solutions are always useful for comparison with 

experiments, it was also considered worthwhile to look for simpler stability cri- 

teria which might at least indicate the approximate conditions under which spon- 

taneous pulsations would be observed. Such criteria were first described in 1979 

[53], and comprehensive treatments were given in 1980 and 1981 for Doppler and 

non-Doppler inhomogeneously broadened lasers respectively [38,39]. In the first 

of these treatments [38], the population fluctuations described above were not 

explicitly included (they aren't essential to the existence of the instability), 

while in the second discussion [39] a detailed procedure for including 
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these pulsations was described. The stability criteria were derived using, in 

effect, the principles of mode-spllttlng [48,50]. In the mode-splitting discus- 

sions it had been shown that a strong frequency dependence of the index of 

refraction leads to the possibility of several frequencies having the same aver- 

age wavelength (i.e., belonging to the same longitudinal mode) inside of a laser 

cavity. Beats between these frequency components could he detected as spontane- 

ous pulsations. 

In a saturating single-mode Inhomogeneously broadened laser, the dispersion 

variations associated with the spectral hole burned in the gain profile have Just 

the right properties to cause mode-splitting. Thus, a saturating mode can 

develop sidebands, and if these sidebands have net gain one concludes that the 

laser is pulsing spontaneously. The details of the resulting stability criteria 

depend on the values of the homogeneous and Inhomogeneous lifetimes as well as on 

the values of the decay coefficients of the laser medium and cavity. Specific 

stability criteria for a xenon ring laser are shown in Fig. 4 as a function of 

the threshold parameter r and the cavity lifetime t c [36]. Roughly speaking, 

with larger values of the homogeneous linewldth (higher pressure) higher pump 

rates are required to observe the instability. The approximations and numerical 

coefficients used in deriving the curves in Fig. 4 are exactly the same as those 

used in the direct numerical integrations discussed above. Although the detailed 

pulse shapes cannot he inferred from stability calculations, it is important to 

note that such calculations are usually less expensive to carry out than numeri- 

cal time domain solutions, and it is possible to represent a wide range of 

operating conditions on a single plot. Recently, stability calculations similar 

to those described above have been performed by Hendow and Sargent [37,40]. 

Fig. 4: 
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Stability thresholds for 

a xenon laser as a func- 
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various values of pressure. 

In the xenon laser the 

maximum gain tends to de- 

crease with increasing 

pressure, so only the 

lower curves are suscep- 

tible to experimental 

confirmation. 
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Those authors have used a slmpler analytical model in which the population decays 

are characterized by a single lifetime, and the results are not so directly com- 

parable to present experimental data. If one further assumes that the single 

population decay rate is equal to the coherence decay rate (i.e., there are no 

phase interrupting collisions), then the stability criteria for an inhomogene- 

ously broadened laser can be obtained analytically, and this has been discussed 

by Mandel [54]. 

Theoretically speaking, the time domain and frequency domain solutions that 

have been briefly described here would seem to he quite complete and quite ade- 

quate. An experimentalist would, however, be far from satisfied. The numerical 

solutions represented by Fig. 2 only agree in a qualitative way with the pulsa- 

tion waveforms obtained in xenon laser experiments. The magnitude of these and 

other discrepancies is sufficient to cast some doubt on the predictive ability of 

the model, especially regarding lasers other than xenon. Accordingly, it has 

seemed worthwhile to explore various generalizations of the basic semiclassical 

model to see whether better agreement with experiment might be obtainable. 

One of the conspicuous deficiencies of the semiclassical models employed in 

previous stability studies is their characterization of relaxation processes 

within the laser medium. In the most general treatments spontaneous decay out of 

each of the laslng levels is governed by a single decay rate Ya or Yb' and the 

models don't allow for direct spontaneous decay from the upper laser state to the 

lower one. On the other hand, it is known that most of the actual spontaneous 

decays from the upper state in xenon do go directly to the lower state. Another 

defect of the previous models asapplled to xenon lasers is their neglect of 

spectral cross relaxation due to velocity changing collisions. In our latest 

investigations, realistic decay processes and spectral cross relaxation integrals 

have been included in the semiclassieal equations using the best available spec- 

troscopic data relating to xenon. The effect of using a more accurate semlclas- 

slcal model is illustrated in Fig. 5a, where a direct numerical solution of the 

equations is shown for a xenon ring laser at 5xl0 -3 torr pressure and llne center 

tuning. The only nonspeetroscoplc parameters used in computing this result are 

the cavity lifetime t = i nanosecond and the threshold parameter r = 1.7. This 
c 

theoretical pulse train may be seen to be in excellent agreement with the experi- 

mental curve in Fig. la, and the values of t and r seem consistent with the 
c 

experimental conditions. This is a substantial improvement over our previous 

calculations, where no reasonable adjustment of parameters would produce signifi- 

cantly better agreement than that suggested by a comparison of Figs. la and 2. 

Under a wide range of operating conditions xenon lasers produce chaotic 

pulsations, and this behavior is also shown clearly by the theoretical models. 

An example of a theoretical chaotic pulse train is given in Fig. 5b using the 
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Fig. 5: Numerical solutions using 

an improved model for 

relaxation processes in 

xenon. Part (a) shows 

exactly periodic pulsa- 

tions for a center-tuned 

laser with a threshold 

pare~neter of r = 1.7. Part 

(b) shows the chaotic 

pulsations of lower ampli- 

tude and frequency that 

result when the threshold 

pareaneter is reduced to 

r = 1.3. Part (c) illu- 

strates the combination 

of period doubling and 

chaos that occurs when 

the laser of part (a) is 

detuned by 5 Aw h. 
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2 0  ~ 0  6 0  

I I 
1 
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Fig. 6: Theoretical and experimental 

pulsation frequencies as a 

function of threshold pare~neter 

(discharge current) for a laser 

tuned to line center. In the 

regions labeled chaos, the aver- 

age frequency is given. 

improved semiclassical model described above with the parameter values t = I 
c 

nanosecond and r = 1.3. A series of similar results have been computed for 

various values of r, and the corresponding pulsation frequencies are plotted in 

Fig. 6 together with the experimental data they are intended to represent. For 

values of r that are close to the oscillation threshold the pulsation waveform is 

essentially a low frequency sinusold. For increasing values of r the pulses 
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develop more structure and more intensity, pass through a chaotic operating 

region, and enter the second periodic region, which was accessible to our experi- 

ments. For very large values of r a second region of chaos occurs, and this 

behavior is in agreement with our frequency domain experiments. Besides the 

theoretical time domain solutions like those shown in Fig. 5, Fourier transform 

frequency domain plots are also being obtained. 

Another interesting aspect of the time domain solutions which we didn't 

specifically investigate previously [51] concerns the dependence of the pulsation 

waveforms on detuning. In a ring laser model a slight detuning from line center 

is found to result in the intensity not quite dropping to zero between pulses, 

and this fact should be considered along with detection limitations and spontane- 

ous emission effects when interpreting the corresponding experimental results. 

In particular, the nonzero intensity between secondary pulses in Fig. la may be 

due in part to detuning, and Fig. 5c gives a recomputation of Fig. 5a including a 

detuning of 5A ~h. Detuning also modifies the regions of chaos, period dou- 

bling, etc., and the pulsation behavior changes significantly as a standing wave 

laser is tuned in the vicinity of the Lamb dip. However, for low pressure opera- 

tion the Lamb dip is narrow and well removed from the frequency of maximum power 

because of dispersion focusing [48,55]. Thus, in a low pressure standing-wave 

xenon laser a ring laser theoretical model should be adequate for most purposes, 

and this conclusion is supported by the results that have been described above. 

Due to space limitations, a more comprehensive written description of this work 

will be given elsewhere [56]. 

In another recent development, Minden has extended the frequency domain 

stability analyses to include small hut finite saturating sidebands on a central 

lasing mode [57]. With a knowledge of the phase and amplitude of the various 

frequency components it is possible to construct the time domain waveforms 

without actually carrying out numerical integrations of the differential equa- 

tions. A typical result of this procedure is shown in Fig. 7, and it is clear 

that the general pulsation characteristics are similar to the experimental data 

and numerical simulations described above. 

14.4  

9 .6  

4 . 8  

~g. 7 : ~pical pulsations 

pre~cted in a ~e- 

quen~ ~main 

semiclassical laser 

equations, he 

intensity and time 

50 100 150 200 scales are ~bitra~ 
+ 
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The preceding paragraphs have dealt primarily with recent theoretical 

developments relating to spontaneous pulsations in xenon lasers. At the same 

time, Abraham and his associates, have been obtaining important new experimental 

data concerning mode-splitting, spontaneous pulsations, and chaos in helium-xenon 

lasers [58,59]. Since Abraham will be describing his results at this meeting, it 

is inappropriate to say any more here. Instead we will conclude by listing some 

other representative laser types in which spontaneous pulsations might be observ- 

able or may already have been seen. Among the requirements that such a laser 

should satisfy is Eq.(8). In particular, the polarization decay rate should be 

small compared to the cavity decay rate. In order for a laser to operate with a 

large cavity loss rate it must have a high gain, and Eq.(8) can be approximated 

by the useful alternate form: 

cg/(2 ~/k ~h )>I, (18) 

where g and c represent respectively the average small signal gain coefficient 

and speed of light, and /~ ~h is the homogeneous linewidth Q ~  = y / ~). 

Besides satisfying Eq. (18), it should be possible to operate the laser under 

conditions of inhomogeneous broadening (low pressure in gas lasers). 

Several high gain lasers are listed in Table I together with an estimate of 

the value of the ratio cg/(2 W/~ ~) for comparison with Eq. (18) [60]. It is 

clear from this table that there are some lasers which are candidates for the 

spontaneous pulsation effect, and the reader will probably think of others. Also 

shown is an indication of whether spontaneous pulsations have yet been observed. 

At this writing it is only in the case of xenon and helium-xenon lasers that 

spontaneous pulsations have been clearly shown to be caused by the semiclassical 

instability, and in the case of the EF and He-he lasers only very noisy outputs 

have been observed without clear evidence of periodic pulsations. 

TABLE i : LASER CANDIDATES FOR THE SEMICLASSICAL 

SPONTANEOUS PULSATION INSTABILITY 

LASER cg/(2~A~h)) INSTABILITY KNOWN? 

Xe, He-Xe 150 yes [48, etc.] 

CH3F 50 yes [61] 

HF 20 noise only 

C02 9 yes [62,63] 

GaAs 5 yes [64] 

He-he (3.39 Um) 5 noise only 

CH31 3 yes [65] 

Rhodamine B 3 no 
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IV. CONCLUSION 

In this study, we have briefly reviewed some of the historical developments 

leading to the present understanding of semiclassical spontaneous pulsations in 

lasers. Even before the first demonstration of an optical frequency laser, it 

was known that the semiclassical maser equations possessed instabilities. These 

ideas were quite well developed by 1964, and periodic pulsations and chaos had 

been seen in numerical solutions of the homogeneously broadened laser equations. 

This subject has attracted increased attention in recent years with the growing 

awareness that the laser equations are similar to the nonlinear equations of 

other unstable physical systems. However, no homogeneously broadened laser has 

yet been shown to satisfy the severe conditions for realizing the instability. 

Spontaneous pulsations in xenon lasers were reported in 1971, and it was shown in 

1978 that these pulsations correspond to an instability of the Lamb equations for 

inhomogeneonsly broadened lasers. The conditions for observing instabilities in 

inhomogeneously broadened lasers are much more easily met than the corresponding 

conditions for homogeneously broadened lasers, and it may be expected that 

several more spontaneously pulsing inhomogeneously broadened lasers will be 

found. 

There is no single easy physical explanation for why the pulsations occur. 

It is safest to simply observe that whenever one has a physical system which is 

governed by several nonlinear equations instabilities and pulsations are a likli- 

hood. Numerous such systems are known ranging in size between nuclear and stel- 

lar dimensions. Mode-splitting interpretations are helpful, and it is also pos- 

sible to derive the stability criteria using Liapounoff's method. Recently, more 

realistic semiclassical models have been developed, and it can now be said that 

the pulsation characteristics of at least the low pressure xenon lasers are rea- 

sonably well understood. The time may be nearing when all of the highly complex 

laser pulsation data that is being reported can be rigorously modelled. While 

spontaneously pulsing lasers are now mainly in the category of laboratory 

curiosities, perhaps one day they will even find some practical applications. 
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1. INTRODUCTION 

As Casperson [1-4] and, more recently, others [6-8] have shown, the 

i~eneously-broadened laser may be particularly susceptible to instabilities even 

in single mode operation. Before this was understood, such lasers (notably HeNe 

.6328) had been intensely studied because the ccrabination of Doppler broadening and 

the resulting anomalous dispersion led to a variety of interesting phenomena [9,10] 

including hole-burning, Lamb dips, and mode-pulling in single-mode lasers. In 

several-mode lasers, additional phenomena were observed including mode-mode interac- 

tions leading to "mode-pushing", phase-locking, or frequency locking, among others. 

Thus it is that when we came to study the predominantly in~eneously broadened, 

high-gain transition at 3.51 microns in xenon a wealth of these phencmena were 

apparent. 

In addition, several rather esoteric-seeming predictions had been made for 

inhcmogeneously-broadened, standing-wave lasers. Bennett [ii] showed that for 

Doppler-broadened standing-wave lasers the overlapping of the two holes burned in the 

gain profile would lead to more than the Lamb dip in the power output versus dettuu- 

ing. In particular, the mode-pulling of the operating frequency toward the atomic 

resonance frequency could become more ccnplicated, including a region where the 

operating frequency was triple-valued for a given detuning of the laser cavity. 

Knowing what we do today from studies of optical bistability [12-14] and multi- 

stability [13-15], we might ask whether the stability of the laser in this region had 

been checked. The answer is no from both theoreticians and experimentalists. In 

part this is historical, the multi-valued stationary solutions appeared before the 

current interest in instabilities. Then too, the prediction was for lasers operating 

far above threshold which may have seemed unreachable experimentally. 

Somewhat later, Casperson and Yariv [16] suggested that 

inhcmogeneously-broadened lasers could support more than one frequency of oscillation 
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for a single cavity mode. This phenomenon would result in several stationary states 

for a single set of operating par~neters, leaving the stability open to question 

again. Although this "mode-splitting" effect would require rather extreme mode- 

pulling, the fact that these multiple resonant frequencies (as detezmined by the un- 

saturated arEm~lous dispersion) would be relatively unaffected by each other for ex- 

treme inhomogeneous broadening suggests that the separate frequencies of oscillation 

might be observed to ~ist in a laser in much the same way as several frequencies 

of different mode structure exist simultaneously. 

The laser of choice for studying all of these anomalies is the xenon 3.51 mi- 

cron systen. This is particularly true because (unlike the HeNe laser which requires 

the heli~n for nonresonant, inelastic p~qping of the neon transition) the xenon can 

provide a high gain medium for helium pressures ranging from 0 to 6 Torr, giving a 

range of inhomogeneous to homogeneous linewidth ratios of from 26:1 to i:i. (The 

xenon natural linewidth is about 4.6 ~ (F~4) and the helium pressure broadening is 

18.6 MHz/To~ [5]). 

As we will see, this laser is susceptible to a variety of instabilities. 

These may prcvide highly stable pulse trains that are even somewhat ttmable in the 

pulsing frequency. We also find a variety of transitions from stable to "unstable" 

behavior. Included among these instabilities are a single pulsing frequency, more 

than one pulsing frequency, subharmonics of a pulsing frequency, and chaotic be- 

havior. It is the chaos that expands the ccmioany of those interested from laser 

physicists to a broad interdisciplinary group. (Experimentally, Condensed matter has 

gotten most of the press and results in physics [17], with nc~Llinear electronic 

devices [18] and opto-electronic devices [13,19] close seconds.) Recently chaos has 

been observed in "all optical" systems including optical bistability [20] and in 

other laser systems [21,223. 

In these lectures we will review experimental results on instabilities and 

chaos in simple laser systens, covering three particular topics. The first will be 

instabilities and chaotic behavior in single-mode standing wave lasers using the 3.51 

micron line in xenon. The second will be similar studies of a self-pulsing ring 

laser also using the xenon transition. The third will be studies of mode-mode inter- 

action and couplings in two-mode and three-mode lasers making transitions frem free- 

running to mode-locked operation. 

2. INSTABILITIES IN SLk~LE-MOEE FABRY-PEROT IASERS 

The design of a single-m0de laser to show these interesting effects requires 

several censiderations, i) The cavity linewidth must exceed the h3mogeneeus 
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linewidth of the laser medium. 2) The gain must bring the laser above threshold and, 

if possible, the laser must be above threshold even for detunings of the operating 

frequency of up to one and a half times the Doppler halfwidth. 3) The laser must 

continue to oscillate on only one mode throughout this detuning. 

The first requirenent means that 2~t e < 1 must be satisfied, where T for the 

xenon line is about 14 x 106 sec "I and can be pressure-broadened to about 300 xl06 

sec -I . This sets limits on the quality of the cavity which is generally dclniD3ted by 

the mirror reflectivity ~/t is affected to a lesser extent by window absorption and 

diffraction losses due to apertures. 

The second requirement means that the laser medit~n must provide relatively 

high gain per unit length to offset the cavity losses and to provide sufficient gain 

for the detuned operation. This will require that at line center the laser be be- 

tween two and four times above the lasing threshold. 

The third condition is the one which severely cranlos the design because, for 

example, single-mode operation under the 120 MHz Doppler-broadened gain medit~ will 

require that successive longitudinal modes operate of order 150-200 MHz apart. 

Considering that mode-pulling for high gain conditions of interest may be a much as a 

factor of 4-6, the free-spectral range of a prototype single-mode unstable laser must 

be of order i000 MHz. This squeezes the laser cavity down to about 15 ore, leaving 

barely I0 am of active region for the laser medium. Hence the high atomic weight of 

the xenon atoms which gives a relatively small Doppler broadening and the high gain 

of the 3.51 micron transition (20-200 dB/meter for various pressures and currents) 

are nearly essential. In addition apertures are required to reject the transverse 

modes. 

The design we settled on for our studies of instabilities in a single-mode, 

Fabry Perot laser is shown in Figure i. The 16.5 om long cavity is fozlned by a 

spherical mirror and a 50% reflecting output coupling wedge. Vertical polarization 

was ensured by the use of windows at Brewster's angle. 

A full characterization of the behavior of this laser requires recording of 

the power output, the intensity fluctuations, and the optical frequency of the laser 

as the gain or detuning is varied. The first two can be obtained by suitable inten- 

sity monitors, at least one of which needs a i00 MHz bandwidth to pass various pulsa- 

tion frequencies. The measurement of the optical frequency, which cannot be inferred 

from the laser cavity length because of extreme and often nonlinear modepulling, is 

achieved by heterodyning the laser under study with a single-mode, frequency- 

stabilized, reference laser. In order to achieve maxim~n sensitivity, a two-laser 

reference system as shown in Figure 2 was used. 
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Figure i: Single-mode, high-gain laser 
(top). PZT, piezoelectric 
crystal; M, mirror; Q, quartz 
window; R, nonexcited return 
path for pressure equalization; 
A, anode; C, cold cathode. 
Depending on intracavity 
apertures, t c ranged from .2 
to 2 ns. 

..... \ L ,  

Figure 2: Optical bench and electronics layout (right). LI, L2, and L, lasers; 
AMP, laser amplifier; P, piezoelectric crystals; HV, high voltage op amp; 
D, InAs detector; HD, high frequency InAs detector; LA, lockin amplifier; 
SA, spectrum analyzer; FO, fast oscilloscope; A, amplifier; C, chopper; 
Q, quartz lens; O, oscillator (500 Hz); F, line filter. 

The first laser was feedback-stabilized to the peak of the gain of a He-Xe 

discharge tube providing a frequency reference that had long term stability of a few 

per day and a short-term stability of about 1/4 MHz. The stabilization was 

achieved by modulating the length of the laser, causing a frequency variation over a 

range of 2 MHz. The resulting power fluctuations were detected by a phase-sensitve 

detector (lock-in anplifier) which provided an error signal to keep the laser- 

anplifier combination operating at the peak output. The long term drift in the laser 

frequency was irrelevant to these measurements as only relative frequency variation 

with detuning of the laser was of interest. A second reference laser was used as the 

actual reference by heterodyning the two lasers and stabilizing the length of the 

second laser to provide a particular beat frequency with the first laser. This 

resulted in a stabilized laser which was not modulated and thus had a linewidth of 

abc~t i00 kHz with a stability of 250 kHz. This second laser had the additional ad- 

vantage of being stabilized to an arbitrary frequency which could be selected for cTp- 

timum visibility of the beat frequencies. Both reference lasers were operated using 

natural xenon which resulted in a shift of about 50 MHz for their peak output frcln 

the peak of the laser under study which was filled with single-isotope enriched 

Xe-136 to avoid complications frcln the mix of isotopes that contribute to the gain in 

the natural xenon 3.51 micron peak. 

In Figure 3 we show a sequence of graphs of the inter-laser beat frequency 

versus cavity detuning for different admixtures of heli~n. 
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Figure 3: 

Laser cavity frequency 80 MHz/div 

Laser operating frequency (inter-laser beat note) shown on vertical scale 
versus cavity detuning for peak output setting of discharge current and 
175 microns of Xe-136 with amounts of helium as shown (in Tort). 
Pulsing region Kkk\\~ ; Chaotic region ~ .  tc~.85 ns. 
Data is shown for laser oI~ration in the vicinity of line center tuning. 

Each curve is drawn for the discharge current giving the maximum output. The 

region of detuning for which pulsing frequencies were observed is shown in each case. 

For 3.7 Torr of heliL~n (or more) no instabilities were observed, but near line center 

frequency a s~all kink in the plot of the operating frequency was noticeable. This 

can be attributed to reduced mode-pulling in the region of overlap of the two holes 

burned in the inhcmogeneously broadened gain profile [ii]. Overall, however, these 

plots are relatively straight near linecenter. For example, the 3.7 Torr case shows 

the laser frequency varying 22 MHz for cavity detuning of 80 MHz. As such things go 

in other lasers, this factor of four is "extreme" mode pulling [see 23-25], though 

not nearly the record factor of 34 observed for He-Xe under special conditions [26]. 
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As the helium pressure is reduced we see the appearance of a region of 

instability near linecenter, though actually more correlated with the peak output. 

An exact determination of the line center frequency is complicated by dispersive 

focussing effects which lead to as!mm~tries in the power output versus detuning cur- 

ves [27,28]. The helium added to increase the homogeneous broadening is also known 

to provide a pressure shift of about 3 ~qz/Torr [29]. Thus the "true" line center 

frequency is obscured by complicated power output and lamb dip shifts and asym- 

metries. It may well be that the observed kink in the det~ing is the most sensitive 

indicator of the location of the frequency of the peak intensity and the chaos region 

may indicate the frequency of zero velocity atoms. The original Bennett prediction 

of a kink in such plots was for stable cw lasing and we are not able to make detailed 

connections with it because of the clearly present instabilities and as!annetries in 

our system. 

The region of observed instability widens as the heli~n pressure is reduced. 

The lower homogeneous linewidth reduces the threshold gain required for the in- 

stability [4,7,8], thus widening the region over which it is observed. With decreas- 

ing helium pressure we also find more complicated pulsing phenomena, including the 

appearance of sidebands to the inter-laser beat note and a region of chaotic power 

spectra near the asyrmretric Lamb dip. 

Figure 4 shows results for the lowest heliun pressure studied (i Torr) at a 

lower gain setting. The pulsing is observed near line center begining at about 20 

Mhz with harmonics appearing as the strength of the pulsations grows. The pulsing 

Vertical axis 20 MHz/div. 

Horizontal axis in both cases is increasing cavity frequency, 

f Pulsing % 
frequency ...... % I */ 

Z 

 OOe; 
put- 

y i 0 
• • i • • • • , D O  J |  

80 MHz/div. 

Figure 4: Power output, pulsing frequencies, and operating frequency versus cavity 
detuning for helium pressure of 1Torr and discharge current of .5 mA. 
Peak power output at this current is roughly half that for the best cur- 
rent. Power output (solid right), relative scale; fundamental pulsing 
frequencies (dotted). Harmonics are not shown but were generally 
observed, tc= .85 ns. 
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frequency moves to a m i ~  of 16 MHz and then rises to a value of 21 MHz. The min- 

irsan frequency occurs at the sharp kink in the frequency detuning plot. Frem our 

previous work [9], it appears that the pulsing frequency is closely linked to the in- 

tensity of the laser. This may be understood in part as due to power broadening of 

the holes burned in the gain profile. Note that the dip in pulsing frequency matches 

the peak output and does not coincide with the apparent dip in the observed asym- 

metric power output versus detuning. 

Returning to the det~ing curve for this case and Figure 3, the plotted dashes 

represent sidebands that were observed to appear in the spectr~n of beat frequencies 

between the reference laser and the laser under study. Note that for the extreme 

detunings in the pulsing region, only one sideband was visible. The sidebands were 

more nearly equal in strength near line center corresponding to AM modulation. With 

detuning the residual pulsing again appeared to involve only one sideband. ~ile 

theoretical and experimental evidence indicates that the line center instability 

represents a Hopf bifurcation [7,8], the single sideband evidence suggests the bifur- 

cation may be different for the detuned case. 

Independently Minden and Casperson [30] and Wesson [31] have attempted to 

model the detuning in the standing %~ve laser but the theory is quite ~lex. The 

initial work was for the so-called "no population pulsations" approximation which 

gives the correct qualitative behavior but fails to exactly incorporate the full non- 

linearities of the median. Recently Minden has completed an alternative analysis in 

the s~all signal regime which seems promising [32]. 

In Figure 5 we show similar data for detuning and pulsing frequencies at the 

highest gain obtained at this lo~est helium pressure from the set shown in Figure 3. 

In this case we see considerably more interesting structure including the appearance 

of a first pulsing frequency at 14 MHz and its harmonics followed by the appearance 

of a second pulsing frequency at 20 MHz. These two incommensurate frequencies 

coexist over a narrow detuning range and at one point appear to lock at exactly a 3:2 

ratio. With slightly greater detuning the higher frequency daniD~tes showing a dip 

in frequency over a narrow range just after the lower frequency disappears. A strong 

dip in the pulsing frequency is then observed as the pulsations become quite chaotic, 

with the frequency shifting frGm a relatively high-Q pulsation at 20 MHz to a broad- 

band spectrum with some broad peaks at 16 ~. The more stable pulsing reappears and 

again terminates at a relatively large value of 24 MHz. 

Figure 6 shows the pulsing frequencies and power output for scans of the gain 

in the region of the two incommensurate frequencies. 
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Figure 5: 
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Figure 6: Power output and pulsing Figure 7: 
frequencies versus discharge 
current for fixed detuning in 
region of two incommensurate 
frequencies from Fig. 5. 

1"0 2"0 mA' 

Power output and pulsing 
frequencies versus discharge 
current for fixed detuning in 
region of chaotic spectra 
shown in Fig. 5. 

T -- two frequencies; c -- chaotic region; S -- subharmonics. 
Harmonics of pulsing frequencies are not shown, tc= .85 ns. 

In contrast to our earlier work, current studies show that maintaining a 

stable, low current discharge in the small capillary of the laser under study 

requires a relatively large ballast resistor, of order 500 kohms or more. With a 

large resistor, we can vary the discharge in the low current regime where the gain is 
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roughly proportional to the current. However, the discharge spontaneously 

extinguishes for currents bel(~ some limit which prevented our work reported here 

frGm observing the laser threshold at low currents. We are also able to raise the 

current sufficiently to turn the mediam into an absorber because the inelastic 

electronic collisions which excite the lasing levels reach the upper level by a 

single collision and the lower level by double collisions. 

In this case we see that the pulsing exists over essentially the entire range 

of lasing action with pulsing frequencies observed as low as 9 ~ at very low gain 

settings. The termination of the pulsations at a threshold value of the gain just 

above lasing threshold indicates how unstable this laser system can be. This 

evidence that the minimum pulsation frequency is nonzero is consistent with the 

latest theoretical predictions [4, 7, 8] and indicates a weakness of the "no population 

pulsations" approximation [2] which predicted a zero frequency at threshold. Thus we 

find that a ccmbination of cavity tuning and gain is required to observe the in- 

stability and not just absolute gain. The vanishing of pulsations at relatively 

large output power in the detuning curves may be interpreted as a requirement of a 

large gain at that particular detuning, but it does not necessarily indicate a 

requirement of a large gain everywhere. Of theoretical and practical interest is the 

lack of hysteresis in these curves, suggesting that the instabilities are relatively 

stable functions of the operating parameters. The pulsing frequency of 9 MHz when 

cc~pared to the pressure-broadened linewidth of 23.2 ~z gives a value of .78 for the 

pulsing frequency normalized to the Y of the median. Current theoretical models 

should shortly be able to predict this n~nber given our cavity lifetime of about 1 

ns. 

Of sane news to the theoretical considerations is the appearance of an asym- 

metry of the pulsing characteristics for two currents giving the same average power 

output. These two currents indicate different excitation of the two atomic levels 

involved in the transition and so such an aslmm~try might be expected but it has not 

heretofore been investigated in the theoretical models. 

The gain scan in Figure 6 also shows the region of two incc~mensurate frequen- 

cies without chaotic interaction. Figure 7 shows similar results for a gain scan 

through the narrow chaotic region. Here there is a broad chaotic power spectr~n at 

the peak gain. At this setting there is a pulsing frequency and its harmonics super- 

imposed on the chaotic background. This is scmetimes referred to as '~eriod one 

chaos". With detuning to the icw current side the chaos reduces to i0 MHz wide peaks 

at 15 ~z and its harmonics and then separates into two competing frequencies at 18 

and 12 ~z before the 12 vanishes and only a narrow set of peaks for 18 MHz and 

its harmonics re~ains. On the high current side of the peak output the chaotic 

background is reduced and the fundamental broad pulsation peak at 16 MHz develops a 
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subharmonic at 8 MHz. As the gain is decreased further with increasing current, the 

subharmonic vanishes and the still relatively broad pulsation frequency disappears 

almost at the laser threshold at a frequency of 8 MHz (.7 in normalized units). 

Selections from the observed power spectra and real-time recording of the 

pulsings are shown in Figure 8. 

Figure 8: Real-time output and power spectra from regions of detuning in Figs. 6,7. 
Real-time displays (top); power spectra (log scale), bottom. Stable 
pulsing (a), two incommensurate frequencies (b), period one chaos (c). 

At these helitln pressures, the lasers typically showed scrne instabilities at 

the most extr~ne detunings observed. Features observed include pulsing frequencies 

and their harmonics and the appearance of subharmonics mixed with features similar to 

those observed near linecenter bet both weaker and at lower pulsing frequencies. All 

of this occurred at about 50-70 MHz detuning from line center. In these particular 

cases, careful analysis of intra-laser and inter-laser beat frequencies established 

that sane of these represented weak instabilities of a very weak transverse mode. 

However, scme features disappeared when the longitudinal beat note vanished suggest- 

ing that there was an instability in the longitudinal mode in this tuning region 

which may prqoerly be ascribed to the mode-splitting of Casperson and Yariv [16]. 

Selected results are shown in Figure 9 for earlier work at no helit~n pressure 

and higher cavity losses (t c = .42 ns). Here for a small homogeneous linewidth, 

three regions of pulsing near line center are observed with definite gaps of no puls- 

ing. This can be attributed to the complicated hole overlapping suppression in a 

slightly dettuued Fabry-Perot laser and is satisfactorily explained by the theoretical 

analyses [30, 31]. 

The pulsing observed away from line center is not linked to other transverse 

modes in this case. The mode-splitting instability [16] may explain the qualitative 
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change from chaotic to stable pulsing in the wings and the appearance of subharmonics 

in Figure 9b. 

Figure i0 shows a sequence of power spectra of the pulsations with increased 

detuning from 10a-10f. These show complicated pulsation frequencies away from line 

center including a high-Q pulsation frequency and a subharmonic and a broad asym- 

metric hLmp. Nearer to line center a siupler pattern of high-Q pulsations and an as- 

sociated subharmonic is observed. Because this early data was taken before the cur- 

rent could be reduced to the highest gain region, no chaotic behavior was observed. 

In quite recent work at no helium, chaotic spectra near line center have routinely 

been found. A more detailed sun~ary of these results will be published elsewhere 

[33]. 

In s~sr~ry, the single-mode standing wave laser provides a wealth of evidence 

for the predicted laser instabilities. The appearance of such instabilities for 

relatively large homogeneous linewidths confirms that this effect does not rely sole- 

ly on inhomogeneous broadening and that the instability is an enhanced version 

[4,7,8] of the self-pulsing predicted originally in models of homogeneously-broadened 

lasers [34-37]. 

There also see~ to be important cGmplications of the results for the dett~ed 

laser that may be properly attributed to the interaction of the two 

counter-propagating waves and the overlapping of the two holes burned in the gain 
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Power spectra with increased detuning (a-f) from line center for 140 
reTort of xenon and no helium. Vertical scale is logarithmic, tc=1.2 ns. 

profile. This suggests that detailed theoretical treatments will be difficult and 

even at line center the standing %~ves may lead to spatial variations that will be 

troublesome to deal with. Nevertheless this work has demonstrated that the in- 

stability can be observed for a wide range of laser parameters and suggests strongly 

that it may also appear in other suitable [4] high gain laser systems. (The experi- 

ments of Weiss et al [21] may indicate single-mode instabilities in a HeNe 3.39 

laser, but at this time it seems more likely that theirs is a multimode effect. ) 

3. INSq]%BILITIES IN RING LASERS 

One of the greatest cc~plications of the standing-wave laser system (spatial 

inhc~ogeneities -- standing waves, spatial hole burning; and double spectral hole- 

burning by a single mode) can be eliminated if one goes to a travelling-wave ring 

laser. By convention the theoreticians can ass~ne a t~uidirectional, single-mode 

laser to sinplify their work and leave it to the experimentalists to realize it in 

practice. 

Difficulties obviously arise because most optical systems are equally trans- 

missive in the forward and baird directions. Thus in a ring laser, the two 

counter-propagating parts of the standing-wave laser becGme t~o modes which are in 

most cases degenerate in frequency. In an extremely Doppler broadened medit~u these 

modes will not significantly interact except in the vicinity of line-center timing 

where the modes use the same atomic velocity classes. 

Because we generally wish to study the mixed broadening cases and operation 

at line-center, it is important to ultimately suppress one of the two counter- 

rotating modes. The classic method for doing this is the use of two linear 

polarizers and two 45-degree Faraday rotators to accc~plish a single-polarization, 

single direction operation. Unforttmately the process of designing and specifying 



119 

the Faraday rotators for a wavelength lacking camnercial applications has been long 

and tedious. Thus our preliminary work with ring lasers has accepted the 

cxmr~lication of two modes. (It has been suggested that undirectional operation could 

be more simply achieved by a nonresonant reflection of one of the output beams, 

returning it into the laser to seed and thereby enhance the other beam and suppress 

the back-reflected beam. We have not been persuaded that this induced coupling be- 

tween the two directions of operation would be desireable and have chosen to wait for 

the Faraday P~Dtators which are now available. ) 

Studies of instabilities and chaos in ring lasers proceeded with the two 

laser configurations shown in Figure ii. 

"#7 U I l i  
a \ I V" 

/ 

/ \ 
/ \\ 

Figure Ii: Designs for Xenon 3.51 micron ring lasers, a) 3-mirror ring with 2 90% 
mirrors (tc=6.2 ns). b) 4-mirror ring with one 90% mirror (tc=3.6 ns). 
Calculated t c neglects gain and dispersion focussing and diffraction 
loss. Round-trip cavity lengths as shown. 

The first laser had three mirrors and a gain meditln in only one arm with o~t- 

put coupling through two 90% reflecting mirrors. The total path length of the ring 

~s 1.5 m giving a free spectral range of 200 MHz. %~%ile some single-mode results 

were obtained, the second laser was designed to give higher gain and a greater free 

spectral range through the reduction of its path length to 60 cm. 

Interesting results were obtained in ~ring the two modes in simultaneous 

operation. Typically, for all det~ings the pulsations were observed in both modes 

or not at all. For 140 microns of xenon-136, the puslation frequences were observed 

in the range of 4-6 MHz. When pulsations were observed, they appeared as either in- 

phase pulsations, suggesting an atomic-pulsation driving of the instability, or as 

out-of-phase pulsations suggesting a very weak coupling and a simple gain ~tition 

mechani~n. The out-of-phase pulsations were observed closer to line center and for 

high heli~n pressures. In sane cases the pulsations simply alternated strength be- 

tween the two directions while occuring in-phase. In these initial studies the pul- 

sations were not observed over a sufficiently wide range to investigate a fully 

uncoupled operation of the two modes. Sane forms of mode switching are knawn to 
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occur in two-mode lasers [38] so some degree of caution must be taken in interpreting 

this data. 

The pressure dependence of the pulsing frequency for fixed ratio of heli~n to 

xenon pressures of 20:1 is summarized in Table i. This data was taken for the long 

laser with t c = 6.2 ns. 

TABLE 1 

Total pressure Pulsing frequencies ~p y=~(A~h) 
(Torr) (x 106 sec -I) 

3.8 - 2.1 
1.9 
1.6 
1.2 
.9 
.7 
.4 
.25 

none 
weak pulsing at i0 MHz 62 + 2 126 + i0 
weak pulsing at I0 MHz 62 108 
moderate pulsing at i0 MHz 62 85 
moderate pulsing at 8 MHz 50 67 
strongest observed pulsing, 6 MHz 37 55 
moderate pulsing at 5 MHz 31 38 
weak pulsing at 5 MHz 31 29 

Data for long ring laser with t c = 6.2 ns (neglecting diffraction losses). 
The decline of pulsing strength at low pressures is due to overall weak laser 
output, while the weak pulsing at high pressures indicates that the pulsing 
is a small modulation of a strong laser output. 

Figure 12 shows typical real-time, multiple-sweep oscilloscope traces of the 

two mode laser output. 

I_ I t ! I t I I. | | | I I I I l ! I s ! ~ a i I i _ 

in-phase pulsing out-of-phase pulsing in-phase, alternate size 
.i s/div .05 s/div .2 s/div 

Figure 12: Multiple-trace, real-time oscilloscope traces of two counter-propagating 
signals in large ring laser showing in-phase and out-of-phase pulsations. 
Real-time signal ac-coupled. Here and elsewhere it is reasonable to 
claim that the signal went to approximately zero between pulses. 



121 

Figure 13 shows several single-trace pulse trains showing both a simple pulse 

height alternation (period doubling) and more ccmlolicated waveforms. In each case 

there see~s to be a sort of relaxation oscillation in each pulse. In some cases 

there are waiting periods between pulses as observed in the early work by Casperson 

[i], in other cases the pulse trains occur steadily if chaotically in an~olitude. 
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Figure 13: Real-time, single-sweep oscilloscope traces of large ring laser pulses. 

To study variation of the pulsing phenanena in detail, we used the ccmpact 

ring laser and found a clear sequence of transitions from stable to chaotic behavior. 

Figure 14 displays several stages of the laser operation with detuning. 

Observations included simple pulsing, period doubling, and chaotic behavior 

represented by a substantial increase in broadband spectral noise. The chaos at 

times included some periodic behavior- period one, period two, period three, and 

period four were observed. Bursts of pulses that seemed to represent higher 

periodicities (period five, period six and period seven) were also observed at or 

near the threshold for chaotic behavior. 

In sane regions of fixed detuning, the laser seemed to spontaneously switch 

frGm chaotic behavior to stable pulsing behavior. It is not presently clear whether 

this was a form of chaotic intermittency ([39,40] which has been seen in numerical 

studies of lasers with modulated parameters [41] and lasers with injected signals 
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Period two 

Period one chaos 

Period two chaos 

Period four chaos 
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Period three chaos 

Full Chaos 

Figure 14a: 
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Real-time single-sweep oscilloscope traces and some associated power 
spectra from the output of the compact ring laser filled with 70 mTorr 
xenon and no helium. 
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quasi- period two or ringing 

high period chaos high period chaos 

period five chaos 

chaos fully developed 

weak chaos weak chaos chaos fully developed 

Figure 14b: Real-time oscilloscope traces of various other characteristic 
features shown by the compact ring laser. From a brief time 
series such as those shown, it is often difficult to infer whether 
there is long-time regularity of high order or whether these represent 
part of even more complicated or chaotic behavior. The time-average 
power spectrum often provides the more definitive answers in these 
cases. 

[41,42]) or was a switching induced by enviror~nental noise. Further isolation of the 

laser cavity and improved mechanical stability will be used to check these results. 

The ring laser has given us the clearest indication that the basic laser 

equations may yield a simple sequence of periodic and chaotic states as various para- 

meters are changed. This is consistent with observations by Haken (single mode) and 

Graham (multimode) [43] that the basic equations (in the hc~ogeneous case) are 

analagous to the Lorenz equations which lead to instabilities and chaos in fluid 

dynamics. The additional laser boundary conditions may provide some limitations on 

direct ~risons, but the data suggests that periodic and chaotic behavior of the 

kinds now well documented for fluids will be observed. Obviously these lasers are 

the subject of intense current study. 
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4. CHAOTIC BEHAVIOR IN THE TRANSITION OF A THREE-MODE lASER TO A MOEE-LOCKED 

CONDITION 

One of the next most intriguing of the sir~ple laser systems is the three-mode 

laser. In his now classic paper, Lamb [9] found that the nonlinearities in the 

median would lead to the generation of cGmbination tones. Under suitable conditions 

these e(m~Dination tones would be at frequencies so close to the frequencies of the 

three oscillating modes that a locking would take place. Bennett's work [i0] also 

considers these mode-mode couplings and these early studies led to o~r present under- 

standing of mode repulsion, mode-pushing and pulling, and a wide variety of ccmplex 

phenomena when modes in standing wave lasers were symmetrically tuned with respect to 

line center. 

Interests in the operation of three-mode lasers come frcm a wide variety of 

sources. The basic locking mechanism which leads to equal spacing of the frequencies 

(mode-locking) results in very short, high power pulses which have been used to great 

advantage particularly for various kinetics and spectroscopy applications. Of course 

the very tedqnical and practical applications require the locking of many modes to 

minimize the pulse length. 

In the early laser instability analyses for hcmogeneously broadened lasers, 

Risken and N~n~edal [36] and Graham end Haken [34] considered a breakdown of cw laser 

action that %~s distinct frcm the single mode instabilities discussed in the previous 

section. They discussed the onset of weak sideband frequencies as supplements to the 

initial operation of a strong single mode. These sidebands are at cavity modes that 

differ frcrn that of the main mode and the instability can be viewed as the onset of 

mode-locked three-mode operation of the laser. Such instabilities have also been 

studied in optical bistability [12,44] and are conceptually simpler to understand 

than the single-mode instabilities discussed earlier. 

In the laser case, the transition with increasing gain frcm free-rtmning 

single-mode (or multimode) operation to mode-locked operation can be viewed as occur- 

ring at a "second laser threshold". Studies of mode-locked dye lasers have found 

such transitions [45, 46]. The pulse to pulse irregularities in sane mode-locked 

lasers [47] may be evidence of a kind of chaotic behavior above this mode-locked 

threshold which is linked to the decoupling of the modes [48] as predicted in the 

mode-locking theories [34, 36,49]. 

With these two guiding interests, one would think that the three-mode case 

would have been well studied and would now be well understood. The literature of the 

three-mode lasers is quite extensive and several good reviews exist [49,50]. A 

variety of authors reported cc~biDmtion tones and low frequency noise which ms 
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variously attributed to phase fluctuations, mode-competition, or secondary beat 

frequencies generated by the nonlinear medi~. However, most studies were cQnpleted 

before the current fascination with (and understanding of) chaotic behavior, so 

detailed investigations of the transition to mode-locing are not available. 

%~en three independent modes coexist in a laser at three separate optical 

frequencies, the power spectr~n of the output intensity will show only the three beat 

frequencies between the modes. A weak coupling of the modes will lead to locking of 

the relative phases without significantly altering the mode frequencies. If the 

phase-locked frequencies are not equally spaced, the nonlinearities of the mediu~ can 

generate a low-frequency modulation of one or more of the modes at a frequency equal 

to the difference between the nearly equal beat frequencies. 

Our interest in this problem begins with the appearance of such a "beat-beat" 

frequency [51] and follows the mode coupling as the gain or cavity t~ing is adjusted 

to bring the modes to a frequency locked (equally spaced frequencies) condition as 

well. 

In Figures 15 and 16 we show thepower spectrum of the laser output for three 

uncoupled modes and for three phase-lockedmodes which show a low frequency "beat- 

beat" note and its harmonics. The three high frequency beat notes are the inter-mode 

beat frequencies that appear in the detected signal. 

,,I I ,  I ! |, 

Frequency scale: 100 MHz/div 

Figure 15: Beat notes observed for Figure 16: 
three-mode laser with 
uncoupled modes. 

Beat notes observed for three- 
mode laser with phase-locked 
modes showing beat-beat notes. 

In Figure 17 we show changes of the iGw frequency secondary beat note pattern 

as the laser is tuned toward the mode-locked condition. 

As the central mode is tuned to line center, the beat-beat frequency goes to 

zero. For large values the spectr~n is relatively stable but as the frequency ap- 

proaches zero a form of critical fluctuations seems to appear as the mode-locking 

condition is neared. When the mode-locking occurs, the low frequency noise vanishes 
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Figure 17: Power spectra (low frequency region) of laser output as laser cavity 
length is tuned to achieve mode-locked operation. 
Vertical scale (logarithmic); horizontal scale 5.5 MHz/div. 

and the output is stable. The simple periodic pulsing at the dominant inter-mode 

beat frequency continues, but it is off scale in these figures. 

In Figure 18 we show the behavior of the beat-beat frequency as the gain of 

Figure 18: 
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Fundamental of secondary beat notes versus discharge current (approxi- 
mately proportional to gain) after reference 36. P, periodic; B, 
broadened; C, chaotic; P2, period two; L, mode-locked. 
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the laser was varied by changing the discharge current. Selected power spectra from 

various regions of distinctive behavior are shown in Figure 19. 

The intermediate mode-coupled state of the laser passes from a stable pulsing 

regime to a much more unstable manner of pulsing evidenced by peaks in the power 

spectrem that were nearly i00 times broader than in the stable region. With further 

change in the gain, stable pulsing reemerged followed by a region of broad noise 

typical of chaotic behavior. Stability returned in a narrow window of period-doubled 

behavior followed by more chaos before the very quiet mode-locked region was reached. 

On decreasing the gain, the mode-locked region persisted over a much wider 

range and only a r~Tnant of the intermediate states was observed before the wide 

range of stable pulsing was obtained. Such hysteresis is to be expected in the lock- 

ing and unlocking of harmonic systems. 

Among the benefits of the understanding of these observations is their aid in 

interpreting recent results in both theories and experiments with other systems. 

Theoretical analyses of lasers with injected signal [42], and lasers with special 

phasing [52] show a form of "breathing", amplitude modulation of pulsing. A phase 

locking of two non-cc~mensurate pulsing frequencies which are nearly identical would 

result in such a breathing effect. 

Recent experiments on a "single-mode" HeNe laser as one mirror was misaligned 

[21] have shown a wealth of phenomena including a Grossmann-Feigenbaum-May type 

[40,53] period-doubling sequence into chaos and a Ruelle-Takens-Newhouse [40, 54] 

route to chaos. It seems most likely from our own work that the tilted mirror caused 

coupling to transverse modes and led to the observed low frequency beats in a manner 

similar to the phase locking in our 3-mode laser system. 

• J (a} 

0 V MHz  

Figure 19: Power spectra of secondary beat frequency and harmonics for different 
discharge currents selected in scan of Fig. 18 (after reference 36). 
a) periodic (P); b) broadened (B); d) chaotic (C); e) period two (P2). 
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As a final general note, there are cases in these three-mode studies and in 

previous work using the 3.51 transition in xenon where we have observed a beat 

frequency characteristic of a difference frequency between a mode detuned frcrn 

linecenter and a nearby hole burned by a second mode detuned to the other side of the 

center frequency. We have also observed instabilities when only a centrally tuned 

mode and a detuned mode were present. This is likely to be caused by a coupling of 

the detuned mode to a latent mode at a frequency close to the ccmbiD~tion tone 

generated by the two oscillating modes. 

Obviously, the nonlinearities in the laser median will create many ccmbination 

tones of various orders, and coupling between modes and ccrabination tones should 

provide a fertile area for both experiments and theory. We should also note that 

such ccm~plexity observed in the simultaneous locking of three modes to nonlinearly 

generated injected signals may be modelled simply by the transition to slaved opera- 

tion of a laser oscillator with an injected signal [42]. 

5. PROSPECTS FOR FdTURE S~3DIES 

Despite the previous work by others and cur own study, there remain many ex- 

citing steps and areas of study. With Faraday Rotation Isolators in place we will be 

able to study the ring laser with unidirectional operation eliminating the two-mode 

ccmlolications in the present work and the standing were ccmplications of the 

Fabry-Perot laser work. We should have an experimental system that is finally so 

simple that the tests of theories and guidance of further theoretical work will both 

be possible. 

The Faraday Isolators will also permit studies of the operation of lasers with 

an externally injected signal (variously referred to as "Laser with Injected Signal" 

or "Injection Locking"). Here too the theory is well developed and predicts a 

variety of intermediate pulsing phenomena and chaos enroute to the ultimate locking 

of the laser to the injected signal. 

Coupling of several modes will also be a subject of continuing study. 

Variations on the mode structure of the modes being coupled will be studied and 

various forms of passive or active mode coupling may be tried to enhance the mode- 

locking regime and to perhaps (happily) c~mplicate the transitions to mode-locking. 

Finally, it is clear from recent work that several routes to chaos are obser- 

ved when the systemls have modulated parameters such as modulated gain of the laser or 

modulated frequency or amplitude of an injected signal [41]. Both from technical 

interests in mode-locking (with active modulators) or injection locking, and frcm the 
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curiosity about the universality of routes to chaos, these predictions should spark 

broad interest and continuing research. 

In st~m~ary, the results are both interesting and tantalizing and confirm the 

widely held view (among those of us with roots in laser physics) that the laser with 

its nonlinear field-atom interactions is a fertile testing ground and broadly ap- 

plicable model for many proposed universal relationships in nonlinear, nonequilibriL~n 

dynamics. 
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Introduction. 

In these notes we consider the simplest case of harmonic genera- 

t ion namely the second harmonic generation. The fundamentals of SHG 

are found in the textbooks of Bloembergenl and Yariv 2 (see also the 

recent review ar t ic les3,4) .  Two d i f fe ren t  situations w i l l  be 

considered: in the f i r s t  part we discuss SHG in a resonant cavity which 

causes only l inear  losses; in the second part we discuss SHG in an 

active laser cavity. 

SHG in a passive resonant cavity is a subject which was recently 

revived by the Hamilton group4,5,6,7 who showed that though the system 

is very simple i t  displays a rich variety of behaviors. In par t icu lar  

self-pulsing may arise from a destabi l izat ion of the f ie ld  phases. In 

the f i r s t  part of these notes we show how modern methods of bi furcat ion 

theory lead to an analyt ic description of sel f-pulsing. These results 

are supplemented by a numerical analysis describing a domain of 

b i s t a b i l i t y  between two self-pulsing solutions. 

SHG in an active laser cavity is a much more complex subject. We 

shall only describe the stationary solutions and indicate some of the 

results of the l inear  s t a b i l i t y  analysis in the second part. 
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SHG in a passive,resonant cavi.ty. 

Consider a nonl inear medium which is the source of SHG and is pla- 

ced in a resonant cav i t y .  This nonl inear medium is pumped by an exter-  

nal coherent f i e l d  whose frequency is doubled by the medium. To st ick to 

essent ia ls we consider the good cav i ty  l i m i t  (also cal led adiabat ic 

l i m i t  in 4) in which the cav i ty  is p r a c t i c a l l y  Iossless for  the d r i v ing  

f i e l d  and has at least  output coupling for  the second harmonic; fur ther-  

more we assume perfect matching. 

In a recent publ icat ion8 we have shown that th is  s i t ua t i on  is des- 

cribed by the equations: 

dR(1)/dt=R'(1)=R*(1)R(2)+E 

R'(2)=-R(2)-R2(1) (1) 

where R(1) is the e l e c t r i c  f i e l d  of the fundamental mode, R(2) the 

e l e c t r i c  f i e l d  of the second harmonic and E the d r i v ing  f i e l d  real 

amplitude. Reduced var iables have been introduced to s imp l i f y  the ana- 

l y s i s .  In terms of the real funct ions 

eqs.(1) become 

R(1)=X+iU R(2)=Y+iV (2) 

The s ta t ionary  so lu t ion is 

X'=XY+UV+E 
y'=-y-x2+u 2 

U'=XV-UY 

V'=-V-2UX 3) 

U=O V=O X=E1/3  y=-E2/3 4) 

The l i nea r  s t a b i l i t y  of th is  so lu t ion is easi ly  tested and shows that  

perturbat ions w i l l  evolve according to an exponential law exp( ~ t) 

where the four eigenvalues are: 

×(iI X(21=i/211x2+(1÷x4 0x2   2] 

The f i r s t  two eigenvalues have always a negative real part .  The las t  two 

eigenvalues can have a negative or a pos i t i ve  real part .  A b i f u r ca t i on  
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occurs when the real part of these eigenvalues vanish i . e .  when 

X=I E:I k=*i (5) 

This is a typical Hopf bifurcation9. I t  was discovered and analyzed 

numerically by Drummond et a i .5 ,6,  7. A f i r s t  analytic study has already 

been presented8. In this lecture we follow an al ternat ive and simpler 

procedure. 

We characterize the v i c i n i t y  of the bifurcation point by a small 

posi t ive parameter ~ such that: 

E=l+ E2E(2)+O((3) 

and seek solutions to eqs.(3) in power series of 6 : 

X(6 ,T)=I+ (2X(2,T)+...  

Y(6 ,T)=-I+ 62y(2,T)+... 

U(6 ,T)= EU(I,T)+ £3U(3,T)+... 

V(~ ,T)= &V(1,T)+ ~3V(3,T)+... 

where 

To f i r s t  order in E we have: 

U'(1)=U(1)+V(1) 

T= ~(  e )t=( l+ 62 ~ ( 2 ) + . . . ) t  

v'(1)=-v(1)-2U(1) 

whose general solutions are the time-periodic functions 

U(1)= eiT+ e -iT , V(1)= ( i -1)e iT- ( i+ l )e  -iT 

To second order in E we have: 

X'(2)=-X(2)+Y(2)+U(1)V(1)+E(2) 

Y'(2)=-Y(2)-2X(2)+U2(1) 

whose general solutions are: 

X(2)=e_T(ceiT21/2+de_iT21/2)+E(2)/3+( 2+i e2iT+c.c.) 
I -4 i  

(6) 

(7) 

(8) 

(9) 

(I0~ 

(11) 
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y(2)=i21/2e-T(ceiT21/2-de-iT21/2)+2_2E(2)/3 

+( .~ e2iT+c.c.) (12) 
4i-1 

These solutions display damped osc i l la t ions which are negl igible 

in the long time l i m i t  (T ~ 1) and undamped osc i l la t ions which remain 

in the f inal  state. 

To third order in ~ we have: 

where 

U'(3)=U(3)+V(3)+P 

V'(3)=-V(3)-2U(3)+Q 
P=P(3)e3iT+p(1)eiT+c.c. 

Q=Q(3)e3iT+Q(1)eiT+c.c. 

(13) 

The d i f f i c u l t y  with eqs.(13) is that P and Q have osc i l la t ions at 

the eigenfrequencies of the homogeneous equations (see 9 and lO).This 

induces in general secular terms which diverge in time. The requirement 

that these terms iden t ica l l y  cancel w i l l  determine E(2) and ~(2) via 

the so l vab i l i t y  condition. To derive this condition i t  is better to 

write eqs.(13) in vector notation: 

Z '=LZ+I  Z=col(U(3),V(3)) I=col(P,Q) (14) 

For 2~-periodic vectors A(T)=A(T+2~)=coI(A(1), A(2)) we define a scalar 

product: ~ 

(A,B)=I/(2R) I~A*(1)B(1)+A*(2)B(2)~dT (15) 

0 
Let the vector D be a solution of D'+MD=O where M is the adjoint 

of L. Then for any Z we have (Z,D'+MD)=O or(-Z'+LZ,D)=O. I f  Z is to be 

a solution of (14) then the last  equality implies that D and I must be 

orthogonal. This is the so l vab i l i t y  condition which is a necessary and 

su f f i c ien t  condition for the absence of secular terms. This condition 

(I,D)=O implies: 

from which we obtain 

P(1)+(1/2-i/2)Q(1)=O 

w(2)=27/17=1.5882... 

E(2)=99/34=2.9118... (16) 
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Hence we have constructed a n a l y t i c a l l y  a so lut ion of eqs.(3) near 

the b i f u rca t i on  point  which becomes periodic in the long time l i m i t .  In 

addi t ion the p o s i t i v i t y  of E(2) ensures, by Hopf's theorem9, the stabi -  

l i t y  of these per iodic solut ions near the b i f u r ca t i on .  

To inves t iga te  the solut ions of eqs.(3) at a f i n i t e  distance of 

E=I we have made a numerical analys is .  In the long time l i m i t  the solu- 

t ions remain per iodic over the range of E we studied. On f i g . ( 1 )  we 

have plot ted the minimum of X(T) for  increasing E. This f igure  displays 

c lea r l y  an hysteresis domain with f i r s t - o r d e r  t r ans i t i ons  between two 

per iodic so lu t ions.  Let us denote by J (K) the i n t e n s i t y  of the modes 

on the upper (lower) branch. In the fo l lowing four f igures E=7. On 

f i g . ( 2 )  we show the l i m i t  cycle in the (U, V) plane corresponding to 

the J solut ions and f i g . ( 3 )  displays the i n t e n s i t i e s  of both modes. On 

f i g . ( 4 )  we show the l i m i t  cycle in the (U,V) plane corresponding to the 

K solut ions and f i g . ( 5 )  d isplays the corresponding i n t e n s i t i e s .  
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SHG in an active laser cavi ty.  

In this paragraph we consider a nonlinear medium, which is the 

source of SHG, placed in a laser. The laser is pumped incoherently and 

produces a coherent f i e ld  whose frequency is doubled inside the cavi- 

ty. I t  is easy to couple eqs.(1) to the usual laser equations to 

obtain: 

R'(1)=-kR(1)+R*(1)R(2)+P 

R'(2)=-R(2)-R2(1) 

~':-k~+DR(1) 

D'=-kii(D-Do)-g(~R*(1)+P*R(1) ) (17) 

In these equations k is the damping constant of mode 1, ~ is the 

atomic polarisat ion of the laser amplifying medium whose relaxation 

rate is kL; D is the atomic inversion with relaxation rate kll and i n i -  

t i a l  inversion DO; f i n a l l y  g measures the atom-field coupling and the 

time has been scaled by the damping constant of mode 2. To derive eqs. 

(17) we have neglected al l  dispersive contributions. 

We introduce the polar decompositions: 



R( j ) :E ( j )exp ( i~ ( j ) )  , 

and the phase differences: 

~U(2) =~(2 ) -2~(i ) ,~(p)=~(p) -~( i  ) 

in terms of which eqs (17) become: 

E'(1)=-kE(1)+E(1)E(2)cos~(2)+PcosT(p) 

E'(2)=-E(2)-E2(1)cos~(2) 

P'=-k~P+DE(1)cos~(p) 

D'=-kt|(D-Do)-2gPE(1)cos~(p) 
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~=Pexp(i~(p) ) (18) 

(19) 

(2o) 

~ ' (2)=(-2E(2)+E2(1) /E(2)  )sin~(2)-2P/E(1)sin~(p) 

~ ' (p )= - ( (DE2(1 )+p2) /E (1 )P)s in~(p ) -E(2 )s i~ (2 )  (21) 

Note that only the phase differences enter in the equations; the abso- 
lu te phases are given by: 

~'(1)=E(2)sin~(2)+(P/E(1))sin~(p) 

~ ' (2)=(E2(1) /E(2))s in~(2) ,  ~'(p)=-(DE(1)/P)sin~(p) (22) 

Quite unexpectedly there are three stationary solutions to eqs.(20) and 

(21): 

(1) F i rs t  there is the t r i v i a l  solut ion: 

E(1)=O , E(2)=O (23) 

(2) Second there is the "normal" solut ion: 

~ ( 2 ) =  ~ , ~(p)=O , E(2)=E2(1)=I+ 

I+=(2S)-I{-1-kS+~(1-kS)2+4Ak~I/2} (24) 

where S=2g/kL k~ and A=Do/kk~ are the reduced saturation and pump para- 

meters respectly. 
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(3) Third there is an "anomalous" solut ion: 

cos~(2)=-(aE(2) )-1, cos~(p)=(l+a21(2)_1)_l 

I(2)=b(A-Ao), l (1)=aI(2)  (25) 

where we have introduced the notations: 

I ( j ) =E2 ( j ) ,  a=(2k~-l/(k+k~), Ao=(2k+l)(2k~+l)/(4kk~) 

b- l=2g(l+ak)/(kkl lk~)-a(a-2)/(4kkz) 

I t  is also easy to determine the phases of the anomalous solut ions: 

~ ( I ,  t)=~t+~(l ,0) 

~(2,t):2wt+2~(1,0)+~(2) 

kp (p, t)=bJt+~( 1,0)+~(p) (26) 

where 2~=a(I(2)-a-2)1/2 (27) 

The concept of s ta t ionar i t y  becomes somewhat ambiguous in the case 

of the anomalous solut ion. Indeed, i f  we had used the cartesian decom- 

posit ion (2) for the f ie lds  and a s imi lar  decomposition for the atomic 

po lar iza t ion ,  we would have obtained the stationary solutions (23) and 

(24) only. Then a l inear  s t a b i l i t y  analysis of (24) would have indica- 

ted a Hopf b i fu rcat ion  leading to a t ime-periodic solut ion which is 

precisely (25). This is because the anomalous solut ion corresponds to 

the simplest example of a t ime-periodic function i . e .  a single frequen- 

cy of osc i l l a t i on  and a constant amplitude; on the contrary, the time- 

periodic solut ion constructed in the f i r s t  part of these notes has 

amplitude modulation and therefore osc i l l a t ions  at the fundamental f re-  

quency and at a l l  harmonics of the fundamental frequency. 

The reason solut ion (25) is anomalous is that i t  does not osc i l l a -  

te at the same frequency as solutions (23) and (24). Indeed we have 

neglected dispersion in eqs.(17) and therefore the cavity has been des- 

cribed as purely absorptive; consequently a l l  three phases vanish for  

"normal" solutions (23) and (24) (the unperturbed frequencies do not 

enter in eqs.(17) since we made a transformation to a rotat ing frame of 

reference). Hence the existence of anomalous solutions indicates that a 

purely absorptive cavi ty is able to act as a dispersive cavi ty under 
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some condit ions. Such a s i tuat ion also occurs in the laser with a satu- 

rable absorber and in the dye laserlO. The common feature of these 

models which explains the occurence of anomalous solutions and the d is-  

persive behavior of an absorptive cavity is the interplay between non- 

l inear  gain and nonlinear loss which leads to a nont r iv ia l  dispersion 

re la t ion admitting new solut ions. 

The l inear  s t a b i l i t y  analysis of the t r i v i a l  solution (23) indica- 

tes that i t  is stable for  A~I. 

The l inear  s t a b i l i t y  analysis of the normal solution (24) is some- 

what more elaborate. As in the case of SHG in a passive cavi ty,  there 

is  a fac tor iza t ion  of the equations governing the s t a b i l i t y  of the pha- 

ses and of the amplitudes. The sal ient  property is that the normal 

solut ion is always destabi l ized, at least by the phases; in addition 

other b i furcat ions may arise from the amplitudes in some domains of the 

parameter space. In these notes we shall discuss the phase i n s t a b i l i -  

t ies only. From eqs.(21) we easily derive the character is t ic  equation: 

~2+~(l+k+kL-I+)+k+k~+(1-2kL)I+=O (28) 

We define four domains in the parameter space (k,kL): 

D(1): O(k~(2 - I /2  

D(2): 2-I/2<k~<1 and 2k) (2k2-1)/(1-k~) 

D(3): 2-1/2<k~<1 and 2k<(2k2-1)/(l-k~) 

D(4): k~)l 

In the domains D(3) and D(4) the phases are destabil ized when k+k~+ 

(1-2k~)I+=O. At th is  b i furcat ion point I+=I(1) i . e .  the anomalous solu- 

t ion begins to ex is t .  In the domains D(1) and D(2) the phases are 

d i s tab i l i zed  when I+=l+k+kL; at th is  point a Hopf b i furcat ion occurs 

which leads to a t ime-periodic solut ion as in the f i r s t  part of these 

notes. 
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ON THE GENERATION OF TUNABLE ULTRASHORT LIGHT PULSES 

A. Seilmeier and W. Kaiser 

Physik Department der Technischen Universit~t M~nchen 

MHnchen, Germany 

During the past decade light pulses in the picosecond range have re- 

ceived increasing attention. Numerous applications were found in opto- 

electronics, molecular physics, chemistry, biology and solid-state 

physics /I/. It is not surprising, therefore, that considerable effort 

has been spent to develop new and more flexible laser systems for the 

generation of the appropriate light pulses. 

A light pulse is characterized by a series of parameters: Pulse 

duration and temporal pulse shape, emission spectrum, beam divergence, 

and pulse energy. The generator and the following tuning system add 

more parameters such as repetition rate, tuning range, and reproducibi- 

lity in frequency and time (jitter). 

At the present time there exists a series of experimental arrange- 

ments which generate pulses with widely differing properties. In this 

short summary we concentrate on five systems (Fig. 1), the performance 

of which has been studied in various laboratories. 

I. The Flashlamp-Pumped Passively Mode-Locked Nd:Glass Laser 

The first high-power picosecond laser system dates back to 1966, when 

the passive mode-locking of a flashlamp-pumped Nd:glass laser was re- 

ported /2/. Such systems have been investigated in great detail /3/ 

and were applied in numerous experiments. It is now well established 

that the pulse properties (e.g., pulse duration and frequency bandwidth) 

vary substantially during the pulse train which is generated for each 

pumping flash. Cutting electronically a single pulse from the leading 

part of the pulse train gives very favorable and reproducible pulses. 

Typically, one obtains pulses at 1.O6 ~m of tp = 5±I picosecond duration, 

which are of Gaussian temporal shape and are bandwidth limited /4/, 

i.e., the spectral width is A~ = 0.44 tp. The peak power of the single 

pulse extracted from the oscillator may readily be amplified in subse- 

quent Nd:glass rods to approximately 1OO mJ or 3×1010 W, i.e. 1018 
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Nd:glass laser 
f lashlamp pumped 

Nd:YAG loser  
f lashlamp pumped 

A; ,  K; loser 
cw mode- locked  

Nd: YAG loser 
cw mode- locked 

cw A~ laser and 
mode-locked dye loser 

pulse repet i t ion energy 
duration rote pulse 

5 ps < 1 Hz 50mJ 

25ps 1-50 Hz 30mJ 

150 ps 80MHz 10 nJ 

80ps 100MHz 100nJ 

1 ps 80MHz 10 nJ 

Fig. I Five laser systems which generate picosecond light pulses (see 
text for details). 

photons per pulse. (Large glass-laser systems for fusion research, where 

several 102 or even 103 Joules are generated, will not be discussed here.) 

The high output power of the mode-locked Nd:glass laser suggests the 

use of nonlinear optical systems for the generation of pulses of variable 

frequencies. In fact, the parametric three-photon process proves to be 

a'highly versatile method to produce picosecond pulses over a wide fre- 

quency range from the infrared to the ultraviolet /5/. Various nonlinear 

crystals have been studied /5-8/, e.g., LiNbO 3, LiJO 3, KDP, ADP, and 

Ag3AsS 3. Detailed data are available of the angle and temperature tuning 

of LiNbO 3 crystals /5/. Using the fundamental laser frequency for pumping 
-I 

the parametric process one obtains tuning between 2700 and 8300 cm ; 

with the second harmonic frequency as pump the tuning range is extended 
-I 

to 17,OOO cm and frequency doubling of the parametrically generated 

pulses leads to light pulses up to 32,000 cm -I (see Fig. 2). On the lower 

side of the frequency scale, very recently the travelling wave parametric 
-I 

process was extended down to the medium infrared range /8/ at 1600 cm 

(see Fig. 3). Proustite crystals of large optical nonlinearity and 

favorable IR-transmission were used in these investigations. 
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Fig. 2 Frequency regions covered by parametric amplification in LiNbO 3 
crystals. 0or is the crystal's orientation angle. (Ref. 5) 
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Two points in favor of the parametric process should be mentioned 

here. (i) The bandwidth of the generated pulses may be predicted from 

the dispersion of the medium and from other system parameters (e.g., 

the pump divergence). In a wide frequency range, pulses (of several 

picoseconds duration) are observed with bandwidths of approximately 
-I 

10 cm (ii) The parametric process, electronical in nature, is very 

fast. As a result, the jitter between two parametric systems operating 

in parallel was found to be less than one picosecond. 

The main disadvantage of a laser with glass as the active material 

is the small repetition rate of operation. The low thermal conductivity 

of glass requires dead times of seconds depending upon the diameter of 

the glass rod. Thus, the acquisition of large amounts of data is limited 

with glass-laser systems. To overcome this problem, solid-state lasers 

with crystals of favorable thermal conductivity have been devised. We 

discuss a frequently used system in the next section. 

II. The Flashlamp-Pumped Passively Mode-Locked Nd:YAG Laser 

This laser system is able to operate - with a small Nd:YAG crystal - at 

a rate of several kilohertz. With larger amplifier crystals the repetition 

rate goes down to one to ten Hz. The pulse trains are shorter in the 

Nd:YAG system consisting of approximately ten individual pulses of vary- 

ing intensity. Cutting out the center pulse of the oscillator train for 

further amplification is a common procedure in many systems. The main 

disadvantage of the Nd:YAG laser is the longer pulse duration of 25 ps 

at 1.O64 ~m. The sharper emission lines of the Nd-ion in the crystalline 

host allow a smaller number of modes to be locked together and thus give 

rise to longer laser pulses. 

With sufficient amplification the pulses of the Nd:YAG laser are 

of high enough peak intensity to operate a parametric single path system 

as discussed in the previous section. Tunable picosecond pulses have 

been generated in this way over a wide wavelength range from the UV to 

the IR around 3 ~m /9/. The parametric process has the additional ad- 

vantage of shortening the laser pulses. In fact, parametrically generated 

pulses of 5 ps /9/ duration have been generated for pump pulses of 22 ps. 

There exists a second method to generate tunable picosecond pulses 

starting from a laser system of fixed frequency. In this case, a dye 

laser is synchronously pumped by the whole pulse train of the primary 

laser or by the second harmonic thereof. Various laser dyes have been 
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used successfully, which absorb at the fundamental /10/, 1.O6 pm, or at 

the second harmonic /11/, 0.53 ~m; typical tuning ranges are 1.15 to 

1.24 ~m and 550 to 700 nm, respectively. 

III. The CW Mode-Locked Ar + or Kr + Laser For Synchronous Pumping 

In recent years, substantial effort has been spent to make the cw mode- 

locked ion laser a reliable device /12-20/ (see Fig.4). It has been re- 

cognized by people working with these systems, that the quality of the 

acousto-optic mode-locking device is essential for the stability of the 

pulse train. A precise match is necessary between the frequency of the 

._• TUNED 
AMPLIFIER 

FREQUENCY 
SYNTHESIZER 

I I { MODE- LOCKED ARGON ION LASER I 

ZACOUSTO_ OPTIC I 

MODE-LOCKER 

R = 5cm = 

r"~ \ 
ETALON R = 5cm/~[....._~ 3 Y E  JET 

R=85cm TUNI 
WEDGE 

<b 

Fig. 4 Experimental system of a synchronously pumped dye laser (see 
Ref. 14). 

driving power and one of the resonances of the acoustic modulator and 

with the frequency difference of the neighboring cavity modes. High 

quality frequency synthesizers are mandatory. Of special importance is 

the observation that noisy pump trains seriously affect the operation 

of a synchronously pumped dye laser. Thus, the performance of the prima- 

ry pump laser is transferred to the quality of the subsequent tunable 

pulse source /14/. 
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The characteristics of synchronously mode-locked cw dye lasers 

have been studied in great detail /12-20/, both experimentally and theo- 

retically. Under carefully controlled conditions it is possible to ob- 

tain highly stabilized pulse trains. Then the background-free autocorre- 

lation curves - most frequently used for the control of the laser per- 

formance - show one sharp maximum without broad wings or sockets. 

Of interest for spectroscopic applications is the generation of 

synchronized trains of picosecond pulses at two independently tunable 

wavelengths /13/. Two cw mode-locked dye lasers were synchronously pumped 

by one mode-locked argon-ion laser. Cross-correlation measurements indi- 

cate - for optimum performance of the whole system - a jitter of a few 

picoseconds between the two pulse trains. 

In a cw mode-locked system, the pulse sequence is quite large with 

approximately 109 pulses per second. For an average output of 0.1W one 

obtains small peak powers of the order of watts. To boost the peak power of 

the picosecond pulses multi-stage dye laser amplifiers have been designed 

which were pumped by a Nd:YAG laser operated at 10 Hz repetition rate /20/. 

Dye laser pulses of a few picoseconds duration with peak powers of the 

order of megawatts were observed. 

Synchronous pumping of semiconductor platelets turns out to be an 

interesting source of tunable picosecond pulses /21/. Various semicon- 

ductor crystals, e.g. CdS, CdSe or InGaASp were pumped by mode-locked 

ion lasers (of ~ 150 ps) to give tunable pulses of 4 to 10 ps duration. 

Cooling of the samples is required in most cases. It is believed that 

lasers of this type have the capability for single-frequency operation 

tunable throughout most of the visible and near IR. 

IV. The CW Mode-Locked Nd:YAG Laser For Synchronous Pumping 

A cw mode-locked Nd:YAG laser provides certain advantages over the con- 

ventional argon and krypton pumping systems. The shorter pumping pulses 

of approximately 80 ps support shorter pulses in the synchronously 

pumped dye lasers and the higher component lifetime promisses reduced 

maintainance cost. 

Using a frequency doubled cw mode-locked Nd:YAG system of high 

stability synchronous pumping of a Rhodamine 6G dye-laser has been in- 

vestigated /22,23/. Red dye laser pulses shorter than 0.5 ps were ob- 

served. In a subsequent two-stage Rhodamine 6G dye amplifier a gain of 

2xi06 was obtained with a repetition rate of 2 Hz. 
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Very recently, the direct synchronous pumping of an IR-dye laser was 

achieved using a cw mode-locked Nd:YAG laser /24/. Infrared laser dyes 

of high photochemical stability have recently been developed which made 

this laser system possible. The tuning from 1.20 to 1.32 ~m (see Fig.5) 

covers the interesting wavelength range around 1.3 um, Where the ab- 

sorption of optical fibers has its minimum. Pulse durations of several 

picoseconds are observed at a laser wavelength of 1.3 ~m. It should be 

noted that this laser system consists of commercially available compo- 

nents and operates at room temperature. 

10 

c~ 0.5 
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0 

F r e q u e n c y  0 Ccm "13 
8 3 0 0  8 0 0 0  7 7 0 0  7~00  

I I I I I I I I [ I 
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1.20 1.25 1.30 
W a v e l e n g t h  X C ~ m 3  

I 
1.35 

Fig. 5 Tuning curve of a synchronously pumped IR dye laser (Ref. 24) 

Besides laser dyes, alkali halide crystals containing various color 

centers were shown to be useful active materials for near IR lasers /25/. 

Mode-locking by synchronous pumping produced pulses as short as several 

picoseconds. The 1.064 um wavelength of a Nd:YAG laser was used as the 

pump source. Most of the crystals require high energy electron beams or 

x-ray irradiation for the generation of the color centers. The laser has 

to be operated at low temperature (% 77K) making the experimental system 

more elaborate. 

V. The Passive Mode-Locking of a CW Dye Laser 

Using a cwA~ laser as a pump source passive mode-locking of a Rhodamine 6G 

laser is possible /26/. The multiple-folded dye cavity contains an ampli- 
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fie~ cell (or jet) and a saturable absorber (see Fig. 6). Pulses with 

a duration of a few picoseconds were achieved and a tuning range of 

590 to 610 nm was observed. 

RHODAMINE 6G 
DYE CELL 

R=5 cm ~ R=tO cm 

ARGON LASER ~ 
~ ~  _....v ~ 5cm 

u iNTERNAL DYE LASER POWER ~ ~ 

R=~ R:5 c m ~ D O D C I  
SATURABLE //~v ABSORBER 

/ ,  
OUTPUT 

Fig. 6 Experimental system of a passively mode-locked cw dye laser 
(Ref. 26) 

The passive mode-locking of a dye laser was investigated recently 

in a ring laser system /27/. The interaction of two oppositely directed 

pulses in a thin saturable absorber gave continuous pulse trains with 

pulses as short as 90 femtoseconds in a Rhodamine 6G dye laser system. 

The counter-propagating pulses create a transient grating in the popu- 

lation of the absorber molecules which synchronizes and shortens the 

pulses in both pulse trains. This process is called colliding pulse 

mode-locking (CPM). 

Amplifier systems for femtosecond pulses have recently been deve- 

loped /28,29/. The four dye-laser stages are pumped with a frequency 

doubled Nd:YAG laser (10 Hz). During amplification an incident pulse of 

90 femtoseconds duration is broadened to 400 fs. Using a grating com- 

pressor the pulse width can be restored to 30 fs with a peak intensity 

at the gigawatt level /28/. These systems operate best at a wavelength 

of 618 nm. 
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Concluding Remarks 

In this short summary we have not yet mentioned two systems which produce 

pulses in the picosecond regime: Flashlamp pumped dye lasers /30/ and 

distributed feed-back dye lasers pumped by a low-pressure N 2 laser /31/. 

The latter generates - close to the threshold - pulses of several pico- 

seconds duration. With the laser dye Rhodamine 6G one obtains an output 

wavelength of 590 nm. The tuning range is quite limited. 

The quest for coherent ultrashort pulses in the UV or even XUV has 

lead to the development of very complex laser systems consisting of 

numerous amplifiers and frequency doubling and/or tripling devices. The 

reader is referred to the literature /32,33/. 

In summary we wish to say that a variety of systems is now available 

for the generation of the desired pulse properties. The strong activity 

in the field of picosecond phenomena will continue to stimulate the 

development of new, pulse generating, devices. 
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RAMAN SPECTROSCOPY WITH ULTRASHORT COHERENT EXCITATION. 

NARROWING OF SPECTRAL LINES BEYOND THE DEPHASING LINEWIDTH. 

W. Zinth and W. Kaiser 
Physik Department der Technischen Universit~t M~nchen 

M~nchen, Germany 

Spectroscopists are constantly faced with the task of improved spectral 

resolution. Two points are of major interest: (i) The precise frequency 

of the quantized transition and (ii) the detection of new neighboring 

transitions. Besides experimental factors the ultimate spectral resolu- 

tion is determined by the inherent linewidth of the transition. Optical 

spectroscopists have to deal with different line-broadening processes; 

for instance with the Doppler effect or with collision broadening in 

gases, with dephasing processes in condensed systems and with the popu- 

lation relaxation which results in the natural linewidth. 

In recent years, different novel techniques have been devised which 

provide spectral resolution beyond the transition linewidth. For in- 

stance, Doppler broadening can be eliminated by saturation spectroscopy 

or by two counter-propagating beams for two-photon transitions/I/. Even 

measurements beyond the natural linewidth have been performed taking bi- 

ased signals from the fluorescent decay /2-5/. Techniques have been pro- 

posed where the difference between the decay rates of the two states 

rather than their sum determines the linewidth /6,7/, and narrowing of 

the natural linewidth by decaying-pulse excitation has been discussed /8/. 

Very recently, we have demonstrated substantial line narrowing of 

Raman type transitions in condensed phases /9-11/. The lines were broad- 

ened by vibrational dephasing. New information was obtained in congested 

spectral regions. 

Theory 

In a transient experiment the spectral resolution is not limited by the 

lifetime of the investigated levels, but is determined by the specific 

experiment. Under favorable conditions the observed line may become 

substantially narrower than the spontaneous width measured in a steady- 

state experiment. We have treated an ensemble of two-level systems of 

frequency difference ~0 using the density matrix formalism. Of importance 
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are the time constants of the system. The population of the upper level 

decays with the damping constant T I and the off-diagonal elements relax 

with the dephasing time T 2. The latter determines the linewidth of homo- 

geneously broadened transitions in stationary experiments, A~spont=I/~T2 . 

Quite generally, we may write I/T2=I/2TI+I/Tph, where Tph is related to 

pure phase disturbing processes. 

The spectral resolution may be improved beyond the limit imposed 

by the spontaneous linewidth ~spont by coherent transient interaction. 

between the electromagnetic fields and the atomic system. We introduce 

an observable quantity, the expectation value of the transition operator 

<r>. It has been shown that <r> obeys the equation of a damped harmonic 

oscillator with driving force A(t) /12,13/. 

"" 2 
<r> + T~ <r> + ~0 <r> ~ A(t) (I) 

Introducing plane waves for A(t) and <r> with slowly varying amplitudes 

propagating in the x-direction we write: 

= I/2 A(t) exp(-i~t + ikAX) + c.c. (2) 

<r> = I/2 R(t) exp(-i~t + ikRX) + c.c. (3) 

and obtain 

8_~R + ~i(~ -~) + I~R = KA(t) (4) 
~t L 0 T2J 

< stands for a proportionality constant, ~ is the momentary frequency 

of the transition amplitude. During the excitation process we have ~=9, 

i.e. the system is driven off resonance by £~ = ~ -~. Eq. (4) is readily 
0 

integrated to give 

R(t,A~) = ~e-t/T2 ~ e (i£~+I/T2)t' A(t')dt' (5) 

At this point we wish to specify the investigation we have in mind. We 

deal with vibrational transitions in molecular liquids. In this case, 

the transition amplitude <r> corresponds to the expectation value of the 

operator q of the vibrational coordinate. The molecular system is first 

coherently excited by the stimulated Raman process and the coherent 

vibrational excitation is subsequently monitored by a properly delayed 

long probe pulse. The Hamiltonian for the molecular system may be written 

in the form /13/: 
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H : H o _ 21 q E (~-~)3~ hi EhEi (6) 
h,i 

3~ 
where (7) is the Raman susceptibility which couples the vibration with 

the electric field E. The subscripts h,i refer to a coordinate system 

which is fixed to the symmetry axes of the individual molecules. The 

force exerted by the electromagnetic field E on the vibrating molecules 

is: 

I o~ EhEi A = Z (~-~) h, i (7) 
h,i 

In our experiments we excite our molecular system by two light pulses. 

The electric fields of the laser pulse, EL, and the Stokes shifted pulses, 

ES, have the frequency difference ~ = VL-~S, the frequency of the driving 

force. 

We recall that the propagation of the light pulses and the inter- 

action with the vibrating molecules are described by Maxwell's equation 

which leads to the nonlinear wave equation 

I 32 4~ 3 2 pNL (8) 
2 3t 2 (z2E) - 2 AE 

c c 3t 2 

U denotes the refractive index of the medium and the nonlinear polari- 

sation pNL couples the light fields and the vibrational mode. Under simple 

conditions we have for the Raman process: 

pNL 3~ 
= N(~) <r> E (9) 

where N stands for the number density of molecules. In the probing pro- 

cess the vibrational material excitation, R(t), and the electric field of 

the probe pulse, Ep, generate a scattered Stokes (and anti-Stokes) wave 

ES2. It has been shown that Eqs. (8) and (9) give Eq. (I0) /13/: 

3Es2 
R(t) E (t) (10) 

3x p 

Experimentally we observe the time-integrated scattered intensity IS2 

as a function of time delay T D between the exciting and the probing pulse. 

Very recently we have demonstrated that coherent probe scattering 

may lead to sub-linewidth resolution of Ra~an transitions /9-11/. Short 

excitation and prolonged interrogation (SEPI) was used. The method is 

shown schematically in Fig. 1. A short driving force A(t) at a frequency 

(i.e., two pulses E L and E S with v = VL-V S) near the resonance ~o of the 
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Fig. I 
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The short excitation and prolonged interrogation (SEPI) tech- 
nique. (a) A short driving pulse, A(t), excites the exponenti- 
ally decaying transition amplitude R(t). (b) The transition 
amplitude R(t) is interrogated by a long pulse E giving rise 
to the scattered pulse Es(t). P 

quantum system generates a transition amplitude R(t) (see Fig. la). The 

driving force has a short duration or is switched off raPidly at t=O. 

After the excitation the exponentially decaying transition amplitude R(t), 

oscillating freely at u0, is investigated by a prolonged probing pulse 

at frequency Up. A pulse with suitably shaped amplitude Ep(t) generates 

= ±u. The frequency the scattered signal Es2(t) with frequency US2 Up 

spectrum of the scattered intensity is observed. IS2(uS2) has the form: 

IS2(~$2 ) ~ !~dt Es2(t) e i~S2t 2 

2 
~ e i e S 2 t  E ( t ) R ( t )  e - i ( U P ± ~ ) t d t  (11) 

j _ ~  P 
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A~ = ~S2-~p±~0 and t e = tp2/(T2×41n2) and using a Gaussian Introducing 

shape Ep(t) = Ep0 exp(-((t-TD)/tp)221n2) for the delayed probing pulse 

we obtain at late delay time T D a Gaussian shaped spectrum centered at 

the frequency ~ ±~ : 
p 0 

Is2(TD,A~ ) = e -2TD/T2 - "(te/tp )241n2 x 

t 12 × ~ e iA~t e-~t-te/tp)3221n2 dt 

-T D 

(12) 

For a long delay time T D the width of the observed spectrum is only de- 

termined by the duration of the probing pulse. For a sufficiently long 

pulse, tp > 1.4 T 2, the SEPI lines are narrower than the spontanous 

width. 

The probing with longer pulses and at later times T D leads to a loss 

of scattered signal (see Eq. (12)). we have calculated the peak intensity 

of the scattered signal as a function of spectral narrowing. We find a 

signal reduction of approximately 106 for a narrowing of four. These 

values are experimentally feasible. 

Experimental System 

The short dephasing times in molecular liquids require picosecond pulses 

in order to measure SEPI spectra, we use exciting pulses with a band 

width of = 10 cm -I tuned in steps over a larger frequency range. For each 

excitation band the coherent spectrum was recorded by a spectrograph with 

sufficient resolution. Fig.2 shows the schematic of our experimental 

system. At the top, l.h.s.,a single frequency doubled pulse from a mode- 

locked Nd-glass laser system enters the figure. This pulse of frequency 

~I = 18,990 cm -I is split in three parts by two conse- 

secutive beam splitters. The pulse in beam I passes through the polarizer 

PI and the sample, but is blocked by the polarizer P2 in its straight 

path. In the center beam 2 of Fig.2 a new frequency ~S is produced in 

the generator by a stimulated Raman process. Changing the medium of the 

generator one readily obtains pulses of different frequencies ~S" These 

pulses are blocked by the polarizer P2 and are spectrally monitored by 

spectrograph SP2. On account of the transient generation process the 

pulses of frequency ~S are shorter in duration than the incident pulses 

9L by a factor of approximately three /14/. The two pulses of the beams 

I and 2 enter simultaneously the sample coherently exciting molecular 
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Fig. 2 Schematic of the experimental system used for the study of 
SEPI spectra of liquids. Beam splitters BS, variable and fixed 
delay VD and FD, polarizers PI and P2, blocking filter F, 
spectrographs SPI and SP2, used in conjunction with optical 
spectrum analysers OA. 

vibrations via transient stimulated Raman scattering at frequency 

v = VL-V S. In the optical path 3 a delayed pulse with polarisation per- 

pendicular to the pulses of I and 2 is produced. This third pulse inter- 

acts with the coherently excited molecules of the sample producing a 

Raman shifted signal pulse. Using Stokes scattering the three pulses 

travel collinearly through the sample. When anti-Stokes scattering is 

used, the probing pulse crosses the beam direction of the exciting pulses 

at the phase matching angle. The spectrum of the coherently scattered 

light is studied by a 2 m spectrograph SPI and a cooled optical spectrum 
-I 

analyser OA. The experimental system has a resolution of 0.2 cm per 
-I 

channel and an absolute accuracy of the frequency scale of 0.4 cm 
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Experimental Results 

We have performed SEPI measurments using a number of organic and anor- 

ganic liquids. First we present results on liquid CH3CCI3, where a single 

Lorentzian shaped Raman line exists at 2939 cm -1. Second, we compare the 
-I 

spontaneous Raman spectrum of CCI 4 at 460 cm with a SEPI spectrum. 

Third, we show results on liquid C6H12, where broad and overlapping lines 
-I 

occur between 2850 and 2940 cm , in the common spontaneous Raman spec- 

trum. 

A. Liquid 1.1.1. Trichloroethane 

-I 
In Fig.3 we show the Raman band of a CH3-stretching mode at 2939 cm 

of liquid CH3CCI 3 measured with a standard laser Raman spectrometer. The 

_E 

i 

I I I 

CH3CCl 3 

-- /~k A~sp =t,.3 crn "I - 

-,~ ,,e, ~ ,  ,%e%, eeee - 

J l J 
2 9 3 5  29/ ,0  29 / .5  
F r e q u e n c y  S h i f t  v /c  £cn~1.] 

Fig. 3 Spontaneous Raman spectrum (solid curve) and coherent probing 
(SEPI) spectrum taken at tD=18.5 ps. The CH3-stretching mode 
of CH3CCI 3 is investigated. Note the narrow SEPI spectrum. 

-I 
Lorentzian shaped line solid curve) has a bandwidth of A~spont = 4.3 cm 

Quite different is the bandwidth of the coherent probing (SEPI) spectrum 

taken at a delay time of t D = 18.5 ps. Now we find a bandwidth of 

A~co h= 2.0 cm-1; i.e., we have a spectral narrowing of a factor of two. 
-I 

The frequency of the Stokes shift of the SEPI spectrum is 2938.2 cm in 
-I 

agreement with the spontaneous value of 2939 cm In this experiment 
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the pulse duration of the exciting and the probing pulse ~:S 5 ps and 

10 ps, respectively. 

B. Carbon Tetrachloride 

The natural abundance of chlorine, 35CI:37CI = 75.5:25.5, lead to 

five components of CC14: 32.5% C35C14 , 42.2% C35C1337C1, 20.5% C35C12 , 
C35C137C13, and 0.4% C37C14 . As a result, the symmetric vibrational 4.4% 

-1 
mode ~i(ai) at 460 cm consists of four major components /15/. The spon- 

taneous Raman spectrum of Fig.4 shows, indeed, four peaks, the intensity 

of which is in good agreement with the distribution of the four major 
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Fig. 4 Raman spectra of the ~I mode of liquid CCI 4. (a) Polarized 
spontaneous Raman spectrum, instrumental resolution 0.5 cm -I. 
(b) SEPI spectrum of CCI 4. Instrumental resolution I cm -I 
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molecular species. The different Raman lines in Fig.4a overlap strongly 
-I 

inspite of the high resolution of the Raman spectrometer of 0.5 cm 

The individual Raman lines are broadened by the dephasing time T 2 = 6.Ops, 

which gives rise to the observed width ~spont = I/~cT2 = 1.8 cm -I /16/. 

The SEPI spectrum of the same vibrational mode of CCI 4 is depicted 

in Fig.4b. In this case the sample was excited for approximately 7 ps by 

a laser pulse and a second Stokes shifted pulse (~L-~S = 458 cm-1). Under 

these conditions the two neighboring major molecular components are 

strongly excited and give rise to the observed strong scattering spectrum. 

The data of Fig.4b were obtained with long probing pulses of tp= 20 ps 

and at a delay time of 40 ps. We point to the sharp lines in the SEPI 

spectrum which are narrower than A~spon t in the spontaneous spectrum of 

Fig. 4a. The depicted linewidths in Fig.4b are determined by the limited 

spectral resolution of the spectrometer. 

C. Liquid Cyclohexane 

As another example for the short excitation and prolonged interro- 

gation (SEPI) technique we present Raman data of cyclohexane in the small 

frequency range between 2850 cm -I and 2940 cm -I. In Fig.5b the polarized 

spontaneous Raman spectrum is depicted. This spectrum was taken with an 
-I 

Ar + laser and a Raman spectrometer with a resolution better than I cm 

The three strong Raman bands correspond to CH-stretching modes and the 

diffuse spectrum between 2860 cm -I and 2920 cm -I is considered to be due 

to overlapping overtones and combination modes which are enhanced by 

Fermi resonance with the fundamentals /17,18/. 

In Fig.5c we show three SEPI spectra on an expanded scale (factor 

3.7). Each spectrum was obtained by a single laser shot. On the r.h.s. 

we present the sharp SEPI band corresponding to the CH-stretching mode 

at 2923 cm -I. The small linewidth of 2.3 cm -I allows to determine the 

peak position accurately to 2922.0 ± 0.7 cm -I. We note that the SEPI band 

is considerably smaller than the corresponding band in the spontaneous 

Raman spectrum of Fig.5b, the latter being asymmetric on account of 
-I 

other smaller Raman transitions. The Raman transition at 2923 cm was 

excited using ethylene glycol, (CH2OH)2, in the generator cell of Fig.2. 

The SEPI spectrum of Fig.5c, middle, shows four Raman transitions. 

Lines as close as 2.5 cm -I are clearly resolved. The four transitions 

are hidden under the wing of the strong Raman band at 2923 cm-1; they 

cannot be detected in the conventional Raman spectrum of Fig. 5b. The 

SEPI spectrum is obtained by using an exciting pulse ~S with a frequency 
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Fig. 5 Experimental results of short excitation and prolonged interro- 
gation (SEPI) spectroscopy of C6H12. (a) Frequency range of 
the various generator liquids used in the experiment. (b) Pola- 
rized spontaneous Raman spectrum of C6H12 recorded with a reso- 
lution of I cm -I. The frequency positions of the resonances 
found in SEPI spectra are marked by vertical lines. (c) Three 
SEPI spectra taken with different generator liquids. New Raman 
lines are detected and the spectral resolution is improved. 
(Note, the frequency scale of c is 3.7 times larger than the 
one of b). 

band extending from 2900 cm -I to 2920 cm -I (dimethyl sulfide, C2H6S, in 

the generator). 

In Fig.5c, l.h.s., we depict a SEPI spectrum obtained after excita- 
-I 

tion by a v S pulse by a spectral band width extending from 2875 cm to 

2890 cm -I (propylene oxide, C3H60). We find two distinct Raman bands at 
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2877.5 cm "I and 2887 cm -I. The band at 2877.5 cm -I has never been re- 

ported previously. It is buried in the diffuse part of the conventional 

Raman spectrum (see Fig. Sb). 

-I 
A final assignment of the new Raman lines between 2870 cm and 

-I 
2920 cm has not yet been made. Inspection of the lower fundamental 

modes suggest overtones and combination modes in this frequency range. 
-I 

Of special interest is the new Raman line at 2912 cm which coincides 

precisely with an infrared active mode of the molecule. It appears that 

we observe here a Raman forbidden mode. 

Additional Observations and Comments 

The following points are relevant for the application of the SEPI tech- 

nique: (i) The frequency positions of the observed Raman lines are in- 

dependent of the excitation conditions since we observe freely relaxing 

molecules. We have tested this notion by exciting our sample with narrow 

or with broad pulses of similar central frequency v S. This experiment is 

readily performed using different media in the generator cell. The ad- 

vantage of a broad frequency spectrum of the incident pulse is to pro- 

vide initial conditions for several Raman transitions in congested fre- 

quency regions. One can observe several Raman lines with one shot (see 

Fig.5c, middle). (ii) In SEPI experiments the exciting and interrogating 

pulses should not overlap temporarily in order to avoid the generation 

of a coherent signal via the nonresonant four-photon parametric process. 

For this reason, the delay time of the third probing pulse has to be 

sufficiently large. One roughly estimates delay times of t D= 20 to 25 ps 

for dephasing times T 2 = I ps and Gaussian probing pulses of 8 ps dura- 

tion. The SEPI spectra are observed with good accuracy, approximately 

five orders of magnitude below the peak value at t D=O. (iii) The maxima 

of the SEPI spectra are not proportional to the Raman scattering cross- 

section, since the initial conditions of the exciting pulses and the T 2 

times are important parameters for the observed magnitude of the gene- 

rated signal. SEPI spectra taken for different delay times allow an 

estimate of the dephasing times T 2 . (iv) The frequency precision of 

the generated Stokes spectrum depends Upon the frequency stability of 

the interrogating pulse. For highest accuracy the frequency VL has to be 

measured simultaneously with the SEPI spectrum. Interrogating pulses 

with a chirped frequency spectrum give unwanted shifts of the SEPI spectra 

and should thus be avoided. (v) The scattering process may also be per- 

formed on the anti-Stokes side of the spectrum. The disturbing inter- 
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ference found in stationary CARS spectroscopy does not occur for the 

delayed probing used with the SEPI spectroscopy /9,19/. (vi) A simul- 

taneous measurement of the coherent Stokes and anti-Stokes SEPI spectra 

allows to eliminate the effect of a chirped probing pulse. In this way, 

the absolute frequency position is obtained with high accuracy /9/. 

Concludin@ Remarks 

The data presented in this article convincingly show the usefulness of 

the short excitation and prolonged probing technique. It is possible to 

obtain molecular information which are not found by other existing spec- 

troscopic techniques. 

References 

I. For a review see: H. Walther, in "Laser Spectroscopy of Atoms and 
Molecules", Topics in Applied Physics, Vol.2, Ed. H. Walther, 
Springer, Heidelberg 1976, p.1. 

2. G. Copley, B.P. Kibble and G.~q. Series, J. Phys. B1 (1968) 724. 

3. H. Figger and H. Walther, Z. Physik 267 (1974) I. 

4. H. Metcalf and W. Phillips, Opt. Lett. 5 (1980) 540. 

5. F. Shimizu, K. Umezu and H. Takuma, Phys. Rev. Lett. 4_/7 (1981) 825. 

6. P. Meystre, M.O. Scully and H. Walther, Opt. Commun. 33 (1980) 153. 

7. H.-W. Lee, P. Meystre and M.O. Scully, Phys. Rev. A24 (1981) 1914. 

8. P.E. Coleman, D. Kagan and P.L. Knight, Opt. Commun. ~6 (1981) 127. 

9. W. Zinth, Opt. Commun. 34 (1980) 479. 

10. W. Zinth, M.C. Nuss and W. Kaiser, Chem. Phys. Lett. 88 (1982) 257. 

11. W. Zinth, M.C. Nuss and W. Kaiser, to be published in Opt. Commun. 

12. J.A. Giordmaine and W. Kaiser, Phys. Rev. 144 (1966) 676. 

13. A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50 (1978) 607. 
A. Penzkofer, A. Laubereau and W. Kaiser, Progr. Quant. Electron. 
6 (1979) 55. 

14. R.L. Carman, F. Shimizu, C.S. Wang and N. Bloembergen, Phys. Rev. 
A2 (1970) 60. 

15. J. Brandm~ller, K. Buchardi, H. Hacker and H.W. Schr~tter, Z. Angew. 
Phys. 22 (1967) 177. 

16. W. Zinth, H.J. Polland, A. Laubereau and W. Kaiser, Appl. Phys. 
B26 (1981) 77. 

17. K.W.F. Kohlrausch and W. Wittek, Z. Phys. Chem. B48 (1941) 177. 

18. K.B. Wiberg and A. Shrake, Spectrochim. Acta 27A (1971) 1139. 

19. W. Zinth, A. Laubereau and W. Kaiser, Opt. Commun. 26 (1978) 457. 



AN AUTOCORRELATOR FOR THE MEASUREMENT OF CW ULTRASHORT 

OPTICAL PULSES HAVING FREQUENCY VARIATIONS 
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i. INTRODUCTION 

Since the speed realized in ultrashort optical pulses obtainable today from 

mode-locked lasers exceeds far off the response of any presently available 

high-speed opto-electronic devices (photodetectors or streak camera), measurements 

of pulse widths of those ultrashort optical pulses must depend on a rather indirect 

method - second-order autocorrelation technique, which was first reported by 

Maier, Kaiser, and Giordmaine [i], and by Armstrong [2]. Although the autocorrelation 

technique includes ambiguity in determining the pulsewidth, it essentially contains 

more information than normally utilized in the pulsewidth measurement. In particular, 

for ultrashort optical pulses obtainable from cw mode-locked lasers, precise scan in 

an interferometric configuration necessary for obtaining the autocorrelation function 

can provide the resolution - in space in place of in time - less than the wavelengths 

of optical pulses to be measured. Hitherto, however, for the pulsewidth measurement, 

only rather coarse intensity autocorrelation component of the pulse has normally been 

measured whereas the included phase component has been discarded. This ignorance 

of the phase component in the conventional autocorrelation measurement is due to its 

fast scan giving an average action in its interferometric measuring process. Retain- 

ing of the phase component in the interferometric measurement can be attained by a 

slow enough scan ensuring the response of a detection system and a corresponding 

stability needed for the interferometric driving mechanism. 

For various applications of the ultrashort optical pulses, a so-called Transform- 

Limited Pulse (TLP), i.e. a pulse having no phase (frequency) variation within its 

pulse duration, is often desired. This causes the necessity of checking the phase 

(frequency) characteristic of an ultrashort optical pulse. An autocorrelator capable 

of retaining the phase component was already reported by Diels employing a gas 

pressure scan [3]. In this autocorrelator, however, the conventional intensity 

correlation information is masked by the phase correlation component, and hence for 

the pulse containing any frequency variation such as chirping, as being normally the 

case, this correlator is not suited for pulsewidth measurements. 

Here, we describe an autocorrelator capable of providing both the intensity 

correlation and an autocorrelation including phase components within a single 
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measurement run. In this autocorrelator, the scanning in its interferometer is 

alternatively switched over two different speeds of fast and slow, thereby the above- 

mentioned two different autocorrelations are recorded in a single run. This auto- 

correlator also has an operation mode as a real-time autocorrelation monitor, which 

is useful in adjusting stages of a source mode-locked laser and the interferometer 

itself. With the use of this autocorrelator, not only the behaviour of ultrashort 

optical pulses can be monitored, but also the phase correlation width can be measured, 

from which degrees of frequency variations contained in those pulses can be estimated. 

Measurements of this kind are usually done by a combination of an intensity auto- 

correlator and a spectrometer. 

For obtaining the above-mentioned two different scanning speeds alternatively 

in a single run, we employed mechanical scanning by a piezoelectric translator 

element. For the monitor mode operation, a speaker was used. The stability of the 

interferometer obtained by the above scheme was found quite satisfactory for our 

autocorrelator purpose. 

2. AUTOCORRELATION INCLUDING PHASE COMPONENTS 

Setup of the constructed autocorrelator is shown in Fig.l. The nonlinear 

interference between mutually delayed pulses, which is necessary for obtaining the 

second-order autocorrelation, is yielded with a combination of a Michelson-type 

interferometer section and an SHG crystal (shown as KDP), and is detected by a slow 

response detector (shown as PMT). A recorded curve s(T) obtained through a slow 

response detector can be expressed as follows [3],[4]: 

S(T) ~ IE(t)] ~ + IE(t-T) I ~ + 41E(t) 12.1E(t-T)I 2 

+ 4{IE(t)12 + IE(t-T) 2} IE(t) l.IE(t-T)l.cos{~T+~(t)-~(t-T)} 

+ 21E(t)I 2. IE(t-T)12.cos2{~T+~(t)-~(t-T)} 

where the electric field e(t) of an optical pulse is assumed as 

e(t) = E(t)expi~t + c.c. 

here 

(1) 

E(t) = IE(t)lexpi~(t) (2) 

is the optical frequency, T is the delay of the autocorrelation, which is and 

varied by scanning one of two arms of the interferometer, and ~(t) represents the 

possible phase variation contained in the optical pulse. 

In (i), the first and the second terms correspond to the background, the third 

term gives the intensity autocorrelation function, and the fourth and the fifth 

terms give the phase correlation information. These last two terms are not observed 
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by a conventional fast scan because they include rapidly varying ~T and 2~T under 

their cosine terms, but a stable slow scan recovers these terms. In our autocorrelator 

fast and slow scans are repeated alternatively, then the intensity correlation and 

the correlation including the phase component i.e. S(T) are obtained separately in 

a single recording. Hereupon it will be helpful to mention that the contrast ratio 

(peak (T=0) to background (T =~) ratio) expected for the complete mode-locked pulses 

(those pulses having zero-E(t) periods in (2)), becomes3:l for the intensity correla- 

tion comprising up to the third term and becomes 8:1 for the whole of S(T). 

I L 
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Figure 1: Set ~o of the 
autocorrelator 

CCP : corner cube prism 
SP : speaker 
PZT : piezoelectric translator 
PM : photomultiplier tube 
BS : beam splitter 
F : filter 
L : lens 

3. COMPUTER SIMULATIONS 

In the following, the correlation including only up to the third term in (I) 

is called the intensity correlation and the correlation including up to the fifth 

term, i.e. the whole of S(T) the phase correlation. 

Computer simulations were tried to see the effects on the intensity and the 

phase correlations when variations of the optical frequency are included in an optical 

pulse. The simplest case of the optical frequency variation may be expressed by the 

phase variation ~(t) as follows: 

~(t) = 4A (t/At)2 (3) 
P 

This means the instantaneous frequency d~(t)/dt contains the following linear 

frequency variation (chirp) with respect to time: 

d~/dt = SAt/(At )2 (4) 
P 

where At is the pulsewidth (intensity FWHM) and A indicates the chirp factor. 
P 

ValVe of A corresponds to the phase difference at the intensity half-maximum point 

(t=At /2) with respect to the pulse center (t=0). 
P 

Ippen et.al. [5] reported the existence of a positive chirp in the ultrashort 

optical pulse from a cw mode-locked dye laser by their dynamic spectroscopy. Also 
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they showed that pulses can be compressed by compensating accompanying chirps by 

using a pair of diffraction gratings having an opposite sign of dispersion with 

respect to the chirp and they concluded that the chirp contained in the pulse from 

their cw mode-locked dye laser was almost linear. Considering such experimental 

evidence, the simplest phase variation ~(t) expressed by (3) was assumed. For the 

pulse waveform IE(t) i in (2), the sech-shape was used with considering theory [6] 

and experiment [7] as follows: 

IE(t) i = sech (i. 76t/At ) (5) 
P 

Computed results are shown in Fig.2, where Fig.(a) shows amplitude, real part, 

and imaginary part respectively of the envelope component of the optical field, where 

the time scale is normalized by At , Fig.(b) shows the intensity (white dotted curve) 
P 

and the phase (group of vertical lines) autocorrelations of the optical pulse, where 

the mutual delay is normalized by the FWHM of the intensity autocorrelation, aTi, 

and Fig.(c) shows corresponding power spectra, where the frequency is normalized by 

the FWHM of the power spectrum for A=0. When A=0 (chirpless), that is, for the case 

of TLP (Transform-Limited-Pulse) a product of the pulsewidth At and the power 
P 

spectrum width AV (FWHM) becomes At AV = 0.32 [8]. For A=0.3, At A~ =0.65, double 
P P 

of that for TLP, and for A = 0.8, At A~ = 1.23, about four times of that for TLP. The 
P 

relation between A and At a~ is shown later in Fig.7. The reported experimental 
P 

values on At a~ obtained from passively mode'locked dye lasers are mostly in a range 
P 

of 0.4- 0.8 [7],[9]. If these spreadingsare caused by the simple chirp of (3), 

corresponding A values are ranging over 0.i - 0.5. From Fig.(b), it is worthwhile to 

notice that the intensity correlation (white dotted curve) is independent from A, but 

the phase correlation (group of vertical lines) is quite sensitive to A. 

4. CONFIGURATION OF THE SYSTEM 

The configuration of the constructed autocorrelator was already shown in Fig.l. 

In the construction of the system, particular attention was payed to make the system 

stable. The whole structure of the interferometer section is built with rigid 

element-holders installed on a massive table and retained in an isolation container 

for the elimination of air-borne vibration and air turbulence. In order to avoid the 

instability of a source laser due to an unnecessary feedback of the pulse into the 

laser, a double-path type in Fig.l is used for the interferometer section. In this 

configuration, as for the end reflectors of the interferometer, the retro-reflection 

type is necessary. We used corner-cube prisms CCP because of its easiness of 

installation. The corner cubes are mounted on holders with a small leaning angle so 

that the light paths reflected at their surfaces are separated from their incoming 

light paths. The beam splitter we used has a reflective coating of 50% on one side 

and AR coating on the other side, and has a small wedge angle between those two planes. 

Mutually delayed pulses prepared in the interferometer section are focussed by a lens 
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Figure 2: Computer simulation of optical pulses (a) field, (b) autocorrelation S(T) 
and (c) power spectrum. In (b), bell-shaped broken white curves show the 
intensity autocorrelation having 3:1 contrast ratio, and groups of 
vertical lines show the phase autocorrelation having 8:1 contrast ratio. 

L of 5cm focal length into an SHG crystal KDP. The SHG crystal we used is a 45°z-60 ° 

y'-cut KDP of 170~m thick. Second harmonic pulses generated in the KDP are, after 

filtering out by a fundamental-cut filter F, sent to a photomultiplier tube PMT. 

In this system the following two modes of operation are possible: 

(a) Real-time intensity autocorrelation monitor mode, 

(b) Intensity/phase autocorrelation measurement mode. 

For accomplishing these two operation modes in a single system, on one arm of the 

interferometer a two-speed (fast and slow) scanner using a precision piezoelectric 

translator PZT is installed, and on the other arm a repetitive fast scanner utilizing 

the piston motion of a speaker SP is installed. For mode (a), the repetitive fast 

Scanner of SP is used, and for mode (b) the two-speed scanner of PZT is used. The 

difficulty of this system is the compatibility of these two modes, because, for the 
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phase autocorrelation measurement a high degree of stability is needed while the 

speaker is sensitive to the external disturbances. The countermeasure for it is 

described in 5. The photodetected current by pMT giving S(Y) of (i) is monitored 

with a CRT in mode (a), or recorded on an xy-recorder after amplified with a lock-in 

amplifier in mode (b). 

Real-time monitor using speaker 

In general, for the generation of ultrashort optical pulses from a cw mode-locked 

laser, precisely controlled setting of various parameters of the laser is necessary 

in its adjusting stage. Also the adjustment of the autocorrelator itself is a time- 

consuming task. For these adjustments and the monitoring purposes, a real-time 

monitor-type autocorrelator is very useful. Already various types of these real- 

time monitors were reported [10],[11],[12]. Here we employed the type using a speaker 

because of its easiness of installation. Checking points of a speaker when it is 

used for these purposes are (a) linearity of movement, (b) response linearity of 

distance versus applied voltage, (c) stability against external disturbances. Since 

we found most commercially available audio speakers were not satisfactory for the 

above points, a reinforced type based on a small-size audio speaker (FW-100, Fostex) 

was constructed as shown in Fig.3. After removing a cone, its voice-coil cylinder 

was extended and was fixed with two reinforced dampers to its frame for ensuring its 

stability and linear movement. The linear movement of the voice-coil was checked by 

the movement of a laser beam spot on the screen at a distance reflected from a mirror 

attached on the top of the voice-coil. This reflected laser beam spot mostly shows 

a small Lissajous motion with conventional audio speakers, but no Lissajous motion 

was observed with the reinforced type. For the operation mode (b), this speaker must 

be fixed stably. This is accomplished by short-circuiting the voice-coil. The 

stability of this fixing is discussed in 5. The scanning sensitivity of this 

speaker is 2 mm/V at 60 Hz. This corresponds to a delay sensitivity of 13 ps/V, 

which provides enough coverage for the delay up to % 10ps. The repetition frequency 

was 60Hz. One of the corner cube prisms is attached on the top of the extended 

voice-coil cylinder. 
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Figure 3: Cross sectional view of the speaker. 
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Pi~zoelectrictranslator 

The piezoelectric translator we used is Burleigh's Inchworm System (PZ-551). 

A corner cube prism is attached on the piezoelectric translator. The scanning speed 

is switched over alternatively from the slow scan of 0.03~m/s to the fast scan of 

30~m/s by the instruction of a microcomputer. When the time constant of the whole 

system including an xy-recorder is set to 300ms, with scanning speeds more than 

15~m/s, the phase component disappears and only the intensity correlation is observed. 

The speed of the x-axis advance of the xy-recorder is also changed in proportion with 

the above scanning speeds. 

5. EXPERIMENTS 

The optical pulses for the experiments were obtained from an argon-ion laser 

pumped Rhodamine-6G/DODCI cw passive-mode-locked dye laser. This laser has a single- 

plate etalon in its cavity, lengthening the pulsewidth to around 1.5ps. The 

oscillation wavelength was around 605nm and the average output was about 20mW. 

Fig.4 shows an example of the CRT-trace of the real-time intensity autocorrelation 

monitor in the operation mode (a). The contrast ratio of this trace is about 3:1, 

indicating the complete mode-locked pulses. The FWHM of the trace, i.e. ATi, is 

2.4ps which corresponds to a pulsewidth, At , of 1.6ps with assuming the sech-pulse 
P 

shape. 

In Fig.5, an example of the interference trace obtained with the interferometer 

system with the slow scan at around the delay T = 0 in the operation mode (b) is shown. 

In the left-half part, the voice-coil of SP was kept opened. No regular interference 

pattern is seen due to the fluctuating motion of the open-circuited voice-coil. In 

the right-half part, the voice-coil was short-circuited, where, owing to the current 

Open Short 

lpm 

Corner cube prism displacement 

O-level 
L f  

Figure 4: Figure 5: 
CRT-trace of the real-time intensity Typical interference trace obtained 
autocorrelation monitor. Horizontal: with the slow scan of PZT. Irregular 
lps/div. 3:1 contrast ratio is seen. trace was obtained while the voice- 
Pulsewidth of 1.6ps is estimated by coil was opened. 
assuming a sech-pulse. 
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feed-back action of the voice-coil to its fluctuating motions, those fluctuating 

movements are well compensated and hence the stabilized interference pattern is 

recovered. The compatibility of the operation modes (a) and (b) mentioned in 4 is 

thus accomplished by short-circuiting the voice-coil of SP during the operation mode 

(b). The standard deviation of included periods in this interference pattern is 

less than 6%. The visibility obtained is almost i, indicating the optical quality 

and the achieved adjustment of the interferometer section. 

Fig.6(a) shows an example of the intensity/phase autocorrelation trace of the 

operation mode (b), and Fig.6(b) shows its corresponding power spectrum. The bell- 

shaped trace seen in Fig.(a) is the intensity autocorrelation curve, which was 

obtained by the fast scan periods, and the group of vertical lines is the phase auto- 

correlation trace, which was obtained by the slow scan periods. They show respectively 

3:1 and 8:1 contrast ratios which are expected values for the comple£e mode-locked 

pulses and can serve as a check of the performance of this autocorrelator. From the 

intensity autocorrelation trace, the intensity correlation width AT. is 2.0ps, while 
1 

from the amplitude variation of the phase correlation vertical lines, the phase 

correlation width ATe, defined as a FWHM of the amplitude variation of those correla- 

tion bars, is 1.4ps. Assuming the pulse shape of sech, the pulsewidth At is deduced 
P 

to be At = ATi/l.55 =l.3ps [8]. From Fig.6(b), the spectral width of this pulse is 
P o 

IIA, which corresponds to a power spectrum width d9 of 0.9THz at 605nm. Thus, the 

observed pulsewidth-spectral width product At A9 becomes 1.2. 
P 
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Figure 6: Observed autocorrelation trace (a) and its corresponding power spectrum 
(b). In (a), the bell-shaped curve corresponds to the intensity auto- 
correlation trace, which has a 3:1 contrast ratio, and the group of 
vertical lines corresponds to the phase autocorrelation trace, which shows 
an 8:1 contrast ratio. 
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6". ESTIMATION OF FREQUENCY VARIATION 

From the result of the computer simulation shown in Fig.l, it is expected that 

any inclusion of simple frequency chirp in an optical pulse should sensitively 

reflect on the observed phase autocorrelation trace while it has no influence on the 

intensity autocorrelation trace. Therefore, a measure of the frequency variation on 

the observed intensity/phase autocorrelation trace may be defined as 

fc = AT~/ATi (6) 

Calculated f vs. chirp factor A for the sech-pulse is shown in Fig.7. Along with 
c 

the f -value of Fig.7 the pulsewidth-spectral width product At AV vs. A is also 
c p 

shown. 

The observed fc-value in Fig.6 is AT#/~T i = 1.4/2.0= 0.7. If we assume this 

observed reduction of f -value is caused by a linear frequency chirp, the chirp 
c 

factor A of this observed pulse can be read from the fc vs. A curve of Fig.7 to be 

0.8. Also from At AV vs. A curve, At A~ is read to be 1.2. This product value 
P P 

obtained from the intensity/phase autocorrelation measurement agrees with the pre- 

viously mentioned value of 1.2 obtained from the measurements of its spectrum and 

intensity autocorrelation. This result partly warrants the measurement by this 

autocorrelator. 

Since the chirp factor A of the observed intensity/phase autocorrelation trace 

of Fig.6 is estimated to be 0.8 as mentioned above, this trace should be compared 

with the computer simulation for A = 0.8 in Fig.2(b). A close resemblance between 

the whole shapes of observed and simulated traces is evidently seen, justifying the 

assumption of sech-pulse shape and linear chirp in this pulse. Particularly, it 

should be noted that, in either trace, the small dip appears in the amplitude 

k i I I I 
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variation of the vertical lines at the outskirt part. The appearing positions of 

these dips in the observed and in the Simulated traces also show an agreement, 

T = At /2, in this case. The dip of this kind can be caused when a monotonically 
P 

varying frequency sweep is present due to the cumulative interference between the 

fourth and the fifth terms in (i) at a large value of ITI, but it cannot be caused 

by any randomly fluctuating phase variation. Therefore, the observation of the dip 

serves as a direct evidence supporting the presence of the chirp in the optical pulse. 

This is a superior point of the phase autocorrelation measurement compared with the 

spectral measurement. 

7. CONCLUSION 

It has been shown that, with using the constructed autocorrelator, which can 

provide both the usual optical pulse intensity autocorrelation and the autocorrelation 

including the phase component, the frequency characteristic included in the optical 

pulse could be estimated. As an example, the deviation from the transform-limited 

relation for the optical pulse from a cw mode-locked dye laser could be explained 

with the inclusion of a linear frequency chirp. This autocorrelator also has a monitor 

mode in addition to the above measurement mode, bringing more easiness to the ultra- 

short optical pulse measurement. 
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I. Introduction 

The investigation of multiphoton ionization is important for applica- 

tions where high power lasers interact with matter as e.g. for the study 

of laser induced plasmas. It can also be a loss mechanism for any appli- 

cation making use of other nonlinear processes. In addition, multiphoton 

ionization enhanced by resonant intermediate states has been used to 

design an efficient single atom detector [i]. From a more fundamental 

point of view theoreticians are challenged since the cross sections and 

angular distribution of photoelectrons as well are the result of the 

interplay between saturation, light shifts, effects of photon statistics 

and temporal and spatial intensity distributions [2-8]. 

If an atom is irradiated by photons having an energy less than the ion- 

ization potential of the atom, the atom cannot be ionized in a single pho- 

ton process. It is, however, possible to ionize the atom by the simul- 

taneous absorption of several photons. In general the cross section for 

such a nonlinear process is very low and high power lasers are required 

for the observation of multiphoton ionization. The cross section may in- 

crease by several orders of magnitude if the photons are tuned into reso- 

nance with one or more intermediate states of the atom. The study of re- 

sonant multiphoton ionization provides matrix elements for bound free 

transitions and information about excited states. In this context the 

measurement of the angular distribution of photoelectrons is interesting 

as it can be highly anisotropic and as its shape critically depends on 

the quantum numbers of the excited state. As a result angular distribu- 
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tions can serve as "fingerprints" of the resonant intermediate states 

making the assignment easier. Photoelectron angular distributions also 

provide information about the phases of bound-free matrix elements, not 

available in total cross section measurements. 

The following chapters are not intended to be a review of the field. In- 

stead, the purpose of the paper is to focus on a few selected experiments 

performed recently ~). In the first part ionization probabilities i.e. 

total, angle integrated cross sections are discussed both for nonresonant 

multiphoton ionization and for ionization through resonant intermediate 

states, where the resonances are transitions to the successive members of 

a series of Rydberg-states i.e. highly excited states. The second part 

deals with angular distributions of photoelectrons in multiphoton ioniz- 

ation, again emphasizing stepwise ionization through resonant intermediate 

states. A brief derivation of the general formula describing the angular 

distributions of electrons in multiphoton ionization is given. 

II. Ionization Probabilities 

Nonresonant ionization 

A first approach to calculate the probability for nonresonant multipho- 

ton ionization is to use perturbation theory in the lowest nonvanishing 

order [3]. The absorption of at least N photons is required to ionize 

the atom if the ratio of the atomic ionization potential and the photon 

energy is between N-I and N. In N-th order perturbation theory the proba- 

bility for multiphoton ionization of the atom is then given by 

n is the density of atoms in the interaction volume V. The N-th power of 

the laser intensity I is averaged in time and space. If pulsed lasers 

are used T is the duration of the laser pulse, a N is called the gene- 

ralized cross section and can be written as the absolute square of an 

infinite sum over all possible intermediate states of the atom. As a re- 

sult several excitation and ionization channels interfere with each other 

and the phases of transition matrix elements play an important role [3]. 
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If the laser intensity is measured in photons/(cm2"s) ~N has the 

dimension cm2Ns N-I. A rough estimate for the magnitude of ~N can 

be obtained in the following way [9]. An atom in an excited state 

has a finite life time determined by the rate of decay to lower lying 

states. If the frequency of the exciting laser is detuned by Au, how- 

ever, the atom can exist at this energy only for times At shorter than 

(Ao) -I as determined by Heisenberg's uncertainly principle. This is 

sometimes referred to as a virtual excitation of the atom. The cross sec- 

tion for an electric dipole transition between bound states in the opti- 

cal region is ~ ~ 10 -16 cm 2 and a typical value for At is 10-14s. 

Since the rate for the first virtual excitation is ~-I, and each of the 

following steps of the multiphoton ionization process has to occur within 

the time At, the probability for each of the following steps is ~.At.I 

and the rate for N-photon ionization is ~.I (~.At-I) N-I. The typi- 

cal generalized cross section for nonresonant five photon ionization is 

therefore 

o'. G "N- A{ 10- 36[c,.'°s +] 
Using this rough number for the generalized five photon cross section 

one can estimate the laser intensity necessary to ionize every single 

atom within the duration T ~ 10-8s of a typical high power laser pulse. 

t0 z9 ph0tons/Ccmas) 
For l eV  pho tons  t h i s  co r responds  t o  1010W/cm 2. E x p e r i m e n t a l  r e s u l t s  

f o r  m u l t i p h o t o n  i o n i z a t i o n  c ross  s e c t i o n s  o f  s e v e r a l  a l k a l i  atoms by 1.2eV 

Nd:YAG laser radiation and its second harmonic is listed in Table i. 

Table i 

Atom 

Photon energy leVI 
N 

~N [ cm2NsN-i ] 

K Na K Na 

2.36 2.36 1.18 1.18 

2 3 4 5 

10-48±0.8 10-79.6±1.1 10-107.3±1.7 

10-136.9±0.5 

10-141±3.0 

References 

[i i] 

[40] 



177 

The above estimate of the required intensity is very crude since the 

average of the fifth power of the intensity in equ.(1) was replaced by 

the fifth power of the average intensity, which in general is not cor- 

rect. On the contrary, the ionization probability critically depends on 

the temporal and spatial distribution of the laser intensity [7]. 

The ionization probability is then determined by the higher order corre- 

lation functions of the field. For an N-photon process induced by chaotic 

light the ionization probability is Nl-times larger than in the case 

where coherent light of the same average intensity is Used [3,12]. 

Equ. (i) also does not consider the case where intermediate states may 

be shifted into resonance with the laser frequency, due to the high in- 

tensities necessary for multiphoton ionization [6,4,13]. In this case 

the signal will not increase with the N-th power of the intensity as 

suggested by equ.(1). 

Resonant ionization 

If the laser frequency is tuned into resonance with an atomic transition, 

population will be created in the intermediate state and the saturation 

of this transition has to be considered. This complication can be avoid- 

ed by using a sufficiently low laser intensity. Often this is not prac- 

tical since, due to low ionization cross sections out of the resonant 

intermediate state, a signal can be observed only after the laser inten- 

sity has been increased beyond the onset of saturation and light shifts. 

If the interest is not focussed on these intensity effects but on the 

spectroscopy of the intermediate state and on the bound-free matrix ele- 

ment it is of advantage to use several lasers differing in frequency 

and intensity. The intensities of the lasers inducing transitions be- 

tween bound states will be kept low to avoid high intensity effects. 

In the case of pulsed lasers the ionizing laser pulse can be time de- 

layed with respect to the laser pulses exciting the intermediate reso- 

nance, so that the excitation is not perturbed by the intensity of the 

ionizing laser pulse. The ionization probability is then determined by 

the one photon ionization out of the aligned or polarized intermediate 

state. 
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In the following, experiments on sodium and barium are discussed where 

the intermediate states are members of a Rydberg-series. In the ease 

of sodium the ionization cross section decreases monotonically with in- 

creasing principal quantum number of the Rydberg-state and is well suited 

to check simple series formulae. The barium Rydberg-states, however, are 

perturbed by doubly excited states and might be considered more interest- 

ing from a spectroscopic point of view. 

Photoionization of highly excited states 

The cross section for photoionization out of excited atomic states de- 

pends on the frequency of the ionizing light. In many cases the cross 

section decreases monotonically with frequency but it may also show mi- 

nima [14 1 . The cross section also depends on the quantum numbers of 

the excited state. Highly excited states have been referred to as Rydberg 

states since their binding energy is described by Rydberg's famous for- 

mula 

E n = - R/n W2, 

where n ~ is the effective principal quantum number which is obtained 

from the principal quantum number n by subtracting the quantum defect 

6, n~=n-6. 6 describes the deviation from the hydrogen spectrum and 

depends on the angular momentum quantum numbers ~ and J and to a good 

approximation accounts for the interaction between the highly excited 

electron and the inner electron shells, one of these interactions being 

the polarization of the ionic core. Many other properties of Rydberg- 

states are also described by scaling laws. The radius of the charge dis- 

tribution of the outer electron increases as n 2 and the radiative life 

time of the states is proportional to n 3. Regarding the bound free tran- 

sitions, the cross section for radiative recombination of an electron 

at a given energy into states of different principal quantum numbers n 

scales as n -3 and the inverse process, photoionization out of Rydberg 

states decreases proportional to n -5 [15]. The difference between the 

cross sections for radiative recombination and photoionization is due to 

the 2n2-fold degeneracy of the level n. Radiative recombination leaves the 

atom in any of these states whereas photoionization starts from one well 

prepared substate. All the scaling laws discussed hold for hydrogen and 

to a good approximation for other one electron systems. 
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Ionization of sodium Rydberg-states 

Relative photoionization cross sections can be obtained from photoion- 

ization spectra. In a thermal beam experiment [16] sodium atoms were 

excited to high lying d-states using two pulsed dye lasers pumped by 

the second and third harmonic of a Nd:YAG laser (Fig. i). The dye laser 

pulse duration was 5 ns. The output pulse of the Q-switched Nd:YAG laser 

at 1.06 ~m was delayed by 20 ns and used to ionize the excited atoms. 

Fig.l: Sketch of the 

experimental 

set up. The 

copper plates 

ensure a field 

free region at 

the interaction 

volume. The 

half wave plate 

was used in the 

experiments of 

section III. 

copper 
plates 

y 
otomic beam 

OVL-~ 

10ser beams 

~haff~w~ave plate 

mesh covered aperture 

The intersection of the atomic beam and the laser beams was in a field 

free region. Electrons emitted in a direction mutually perpendicular to 

the atomic beam and the laser beams penetrated through a wire mesh cov- 

ered aperture and were accelerated towards the electron multiplier 

capable of detecting single electrons. The multiplier signal was plotted 

on a chart recorder as a function of the wavelength of the second dye 

laser inducing transitions from the 32p-state of sodium to n2D-states. 

Fig. 2 shows a recorded spectrum. The intensities of the two dye lasers 

were high enough so that the population of the n2D state was saturated i.e. 

independent of n. Therefore the relative intensities of the spectral 

lines yield the relative photoionization cross sections. In Fig. 3 the 

line intensities are plotted versus n on a log-log scale. The solid 

line corresponds to a slope of five. It is clearly shown that the n -5 

scaling law is in fairly good agreement with the data. 
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Fig.3: Relative photoionization cross sections 

of sodium n2D states versus n [16]. 

The measurement of absolute cross sections requires the absolute measure- 

ment of the laser intensity and the atomic number density. The atomic 

density, however, is not required if the saturation of the ionization 

signal with laser intensity is measured [9!. This technique has been 

used to measure absolute cross sections of the 5s and 4d state of 

sodium [17]. 

Ionization of barium Rydberg-states 

For atoms with two valence electrons bound Rydberg-states correspond to 

the excitation of only one of the valence electrons. Such a Rydberg 

series ma~ howeve D be perturbed by configuration interaction with doubly 

excited states. These are states where both valence electrons are ex- 

cited and the corresponding energy levels lie close to highly excited 
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members of the Rydberg series. This is the case in barium where the 6snd 

series is perturbed e.g. by the doubly excited 5d 7d ID 2 state which 

lies near the 6s 27d ID 2 state (Fig. 4). An experimental arrangement 

similar to the one used for sodium was used to take photoionization spec- 

tra in the region of the perturbing doubly excited state 18]. As can be 

seen from the energy level diagram of barium (Fig. 4) a further complica- 

tion arises as the first excited states of the singly charged ion are the 

5d 2D3/2. and 5d 2D5/2 states lying about 0.6 eV above the 

6s 2Sl/2/ groundstate of the barium ion. 

Using 1.2 eV photons to ionize a highly excited state of the neutral 

barium atom the remaining ion might be left in either the 6s or the 5d 

state, corresponding to velocities of the emitted electron differing by 

a factor of two. The atoms are ionized in a field free region. Since in 

addition pulsed lasers are used for ionization the energy of the emitted 

electrons can be analyzed using the time of flight method. The photoion- 

ization spectrum has been taken by recording either the slow, the fast 

or the total electron signal. In the photoionization of barium in a 6s nd 

state the most likely process is to emit the nd electron leaving the ion 

in the 6s state resulting in a fast outgoing electron. If the 5d 7d state 

is photoionized the ion will most likely be left in the 5d state emitting 

a slow electron. As a result the admixture of the 5d 7d state into the 
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6s nd series by configuration interaction is correlated with the proba- 

bility of measuring slow photoelectrons and anticorrelated with the pro- 

bability of measuring fast photoelectrons (Fig. 5). In addition the total 

photoionization signal along the Rydberg series has a maximum near the 

perturber since the cross section for the photoionization of the 5d 7d 

state is larger than the one for high lying 6s nd states. Similar per- 

turbations of the Rydberg series can be observed in the line positions 

[19,20], the lifetime [21-23], the g-factor [24], the hyperfine 

splitting [25], and the isotope shift [26]. Photoionization is an 

alternative scheme for the investigation of excited states and also yields 

information about the bound-free matrix elements especially in connection 

with angle resolved measurements of photoelectrons as will be seen in the 

following. 
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III. Angular Distribution of Photoelectrons 

Differential photoionization cross sections have first been observed in 

photoionization of ground state molecules with x-rays [27]. For such 

high energy photons the photon momentum is not negligible with respect 

to the momentum of the bound electron. This results in the famous dis.- 

tortion of the photoelectron angular distribution due to momentum 

transfer. The first measurements of the angular distribution of photo- 

electrons in single photon ionization of around state atoms and mole- 

cules with photon energies less than i0 eV have been performed by 

Berkowitz and Ehrhardt [28]. At these photon energies the photon 

momentum transfer can be neglected. The angular distribution of photo- 

electrons in one photon ionization of ground state atoms is given by the 

differential cross section for photoionization and can be written as [29] 

e is the angle between the direction of the outgoing electron and the 

quantization axis which is most conveniently taken to be parallel to 

the direction of polarization of the ionizing light. P2 is the second 

Legendre polynomial and ~Tot the angle integrated (total) photo- 

ionization cross section. This equation for the angular distribution 

reflects the dipole character of the interaction between the photon 

and the atom. In experiments the anisotropy parameter 62 is measured 

e.g. as a function of the wavelength of the ionizing light. 

Equation (2) is correct only if all m-substates of the initial state 

of the atom are equally populated. It therefore does not apply to re- 

sonant or nonresonant ionization with two or more photons. In this case 

higher order Legendre polynomials have to be included. 

The angular distribution of photoelectrons in multiphoton ionization 

was first observed by Edelstein et al. [30] when ionizing titanium 

atoms in a resonant two photon process. In subsequent experiments on 

sodium, cesium, strontium, and neon [31-38] the influence of resonant 

intermediate states on the angular distribution was studied. First ex- 

periments on angular distributions of electrons in nonresonant multi- 

photon ionization were performed recently [39-41]. 

In the case of resonant multiphoton ionization the resonant intermediate 
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state in general has spatial anisotropy i.e. not all magnetic sublevels 

are populated. Therefore, the calculation of the electron angular distri- 

bution in photoionization out of a state with a well defined magnetic 

quantum number m will be sketched briefly. The result can also be used to 

give the general formula for the angular distribution of photoelectrons 

in nonresonant multiphoton ionization. 

Calculation of photoelectron angular distributions 

The differential photoionization cross section is obtained by evaluating 

the electric dipole matrix element for the transition from the initial 

bound state to the continuum. The effects of spin orbit and hyperfine 

coupling have been discussed in several theoretical papers [42-44] but 

for the sake of simplicity will be ignored here. The wave function of 

the bound state is characterized by the principal, angular momentum and 

magnetic quantum numbers. For a potential with point symmetry it facto- 

rizes into a radial and an angular part: 

Jnem> = R=e (a (o,f) C3) 
The continuum state is taken as a superposition of an incoming spheri- 

cal and an outgoing plane wave and can be expanded in Legendre polynomi- 

als [3,45] which in turn can be expanded in products of spherical har- 

monics : 

e'=O r.=-~' 
The arguments of the spherical harmonics contain the angles 8,~ and 

0,~, which describe the direction of the wave vector ~ and the radius 

vector ~, respectively. The angular distribution of the photoelectrons 

is then proportional to the absolute square of the electric dipole ma- 

trix element 

d /aQ l<Rl . InCm>l = (5) 

where ~ is the polarization of the ionizing light. For light polarized 

linearly in the z-direction we have ~=(0,0,i). The corresponding selec- 



185 

tion rules are A~=;I. With these selection rules only two terms in the 

infinite sum (4) describing the continuum state have to be considered. 

d~/d~ is then the absolute square of the amplitudes of two outgoing 

e'---- partial waves C=e+l and e-l. The absolute square contains an inter- 

ference term which depends on the difference of the corresponding scat- 

tering phases 6~+I-6e_ I. The information about the scattering phase 

is available only in the angular distribution [3]. When measuring 

the total cross section ~tot the angular distribution has to be inte- 

grated over 8 and ~. In this case the interference term vanishes due 

to the orthogonality of the spherical harmonics. 

For the purpose of deriving equ. (2) for one-photon ionization and the 

corresponding formula for N-photon ionization the problem is simplified 

here by neglecting the (e-l)-partial wave. Of course for almost any spe- 

cial case this simplification would yield wrong numbers. It is, however, 

useful for the purpose of determining the highest order of anisotropy to 

be expected for the angular distribution. Using this simplification the 

angular distribution is 

(6) 

Here the electric dipole operator ~.~ is written as r cos8 for lin- 

early polarized light. A~+ 1 represents the radial integral 

o0 

J'e+l =4%0  dr rG<e''(r) 
The a n g u l a r  p a r t  o f  t he  e l e c t z i c  d i p o l e  m a t r i x  e l emen t  has a l r e a d y  been 

evaluated in equ. (6): 

* ( r )  
a 0 

In the case where all magnetic sublevels of the bound state are equally 

populated da/dQ of equ. (6) has to be summed over m. Using the follow- 

ing relations 
e 

~=-~ m(Ol ~ (2~+ ~)/~ and more general 
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e H 

"=0 
m = aj sin2J(O) (g) 

one  o b t a i n s  f o r  t h e  m - a v e r a g e d  a n g u l a r  d i s t r i b u t i o n  a c o n s t a n t  p l u s  a 

s i n 2 e  t e r m  and  t h u s  t h e  same g e n e r a l  f o r m  as e q u .  ( 2 )  [ 4 5 ] .  

The physical interpretation is that the original system consists of the 

spatially isotropic atom and the incoming photon. Since the interaction 

of the photon and the atom has dipole character the total system has 

dipole anisotropy which is also displayed in the photoelectron angular 

distribution. Considering the case of N-photon absorption the single 

dipole interaction leads to an angular distribution containing even 

powers of m up to 2N. The angular distribution is again averaged over 

the m sublevels of the initial state. The result is the general formula 

for N-photon ionization 
N 

-4-,rr )  32jP2jg°sO)(q) 
j=O 

Again the physical interpretation is that in each absorption step the 

spatial anisotropy of the initially isotropic atoms can be increased 

due to the dipole character of the photon-atom interaction. Since the 

physical interpretation is not affected by the coupling scheme equ. (9) 

holds also in the case of spin-orbit and hyperfine coupling. 

The coefficient ~2N of the most anisotropic Legendre polynomial in 

equ. (9) is zero if the anisotropy of the atom is not increased in one 

of the absorption steps. This can take place only in resonant multiphoton 

ionization whenever two successively excited states have the same number 

of m-sublevels and the laser light is linearly polarized. 

Another factor complicating the calculation of the photoelectron angular 

distribution is that the remaining ion may carry some anisotropy. This, 

however, does not apply to the ionization of alkali atoms with photons 

having an energy of a few eV. The ground state of singly ionized alkali 

atoms is a IS o state and the excited states of the ions lie so high 

that they are not accessible by photoionization with visible laser 

light. If several lasers are used which do not all have the same direc- 

tion of linear polarization the angular distribution also depends on ~. 

The maximum possible anisotropy, however, is still determined by the 

number of photons absorbed. 
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Nonresonant multiphoton ionization 

Many experiments have been devoted to the study of the dependence of 

the total ionization rate on the laser intensity and laser light sta- 

tistics [2,46] and to the investigation of N+M-photon ionization in the 

presence of N-photon ionization [47]. First measurements of the photo- 

electron angular distribution have been performed recently [39-41]. In 

one of them [40] sodium atoms of a thermal beam were nonresonantly 

ionized by the absorption of five photons of a Nd:YAG laser beam having 

a wavelength of 1.06 ~. The angular distribution of photoelectrons was 

measured in a plane perpendicular to the direction of propagation. The 

Fig.6: Polar diagram of the 

measured (x) photoelectron 

angular distribution. 

The double arrow indicates 

e = 0, the direction of 

linear polarization of 

the laser beam. The full 

curve is the result of 

a least squares fit [40]. 

resulting angular distribution shown in a polar diagram in Fig. 6 is 

highly anisotropic and a least squares fit of equ. (9) (solid line) to 

the data (crosses) yields significant coefficients 82j up to j=5 as 

expected. The value of the coefficients 82j, however, still have to 

be interpreted theoretically [40]. The photoelectron angular distri- 

bution offers information in addition to what can be learned from total 

cross section measurements and it can be hoped that it will help to 

interpret nonresonant multiphoton ionization processes. 
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As suggested by equ. (6) the angular distribution of photoelectrons 

critically depends on the £ and m quantum numbers of the intermediate 

state and thus provides information about this intermediate state. Using 

a time delayed step-wise two photon ionization of sodium e.g. quantum 

beats have been observed in the angular distribution yielding the hyper- 

fine splitting of the 32P3/2-state [33]. In the case of resonant multiphoton 

ionization with several lasers different m-substates of intermediate 

states can be populated by choosing appropriate combinations of laser 

polarizations. This effect has been demonstrated in resonant three photon 

ionization of sodium [34,36,48,49]. As already discussed in the paragraph 

about the photoionization spectra of sodium 2D states (Fig. I) two dye 

lasers and a Nd:YAG laser were used to resonantly ionize sodium atoms of a 

thermal beam through the 32p and 202D intermediate states [48]. The three 

laser beams were propagating nearly collinearly, the maximum angle between 

the photon wave vectors being less than 2 degrees. Polarizers were used 

to define the direction of polarization of the lasers and the angular dis- 

tributions were recorded in a plane perpendicular to the photon wave 

vectors by inserting one achromatic half wave plate in the two dye laser 

beams and one low order half wave plate in the Nd:YAG laser beam and ro- 

tating them simultaneously with stepping motors. Fig. 7 shows polar dia- 

grams of photoelectron angular distributions recorded for various combi- 

naticns of polarizations and for two different first intermediate states 

32PI/2 and 32P3/2 respectively. On the top of each column in Fig. 7 

the three arrows indicate the polarizations of the lasers for the first, 

the second, and the final step. The data demonstrate the sensitivity of 

the photoelectron angular distributions on the m-quantum number of the 

intermediate state. 

It is obvious that the anisotropy of the photoelectron angular distri- 

butions depends on the intermediate state. The maximum order of Legendre 

polynomials necessary to fit the data is four and six for the 32PI/2 

and 32P3/2 intermediate state respectively. As discussed above this 

is easily explained by the fact that in the case of the 32Pl/2-inter - 

mediate state no anisotropy is transfered to the atom, i.e. both m-sub- 

levels of the 32PI/2 state are equally populated. 

These angular distributions can also be used to show that for Na n2D 

states the d ÷ p partial wave has a negligible amplitude as compared to 
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Fig.7: Polar diagrams of 

photoelectron angu- 

lar distributions 32 
R 

in the ionization ~/2 

of sodium via the 

32p and the 202D 

states. The polari- 

zations of the 

three lasers used 32D/2 

is indicated. 

--l col l--l 

the d ÷ f partial wave [49]. This is a result also obtained in a measure- 

ment of the total cross section where the intermediate state was fully 

polarized [17!. 

In potassium e.g. the d ÷ f partial wave has an amplitude about four 

times as large as the one for the d ÷ p partial wave [50]. Consequent- 

ly the partial cross sections differ by a factor of ten or more. This 

shows a potential application of angular distribution exPeriments since 

weak partial waves appear much stronger than in total cross section ex- 

periments. In potassium this could be used to look for the minimum in the 

wavelength dependance of the d ÷ p partial wave predicted by Aymar [50]. 

Resonant ionization of barium 

As described in the paragraph about relative cross section measurements 

Ba-atoms have been ionized in a resonant three step process via the 6s6plPl 

state and high lying D states [17]. The measurement of electron angu- 

lar distributions in the photoionization of two electron atoms can be ex- 

pected to yield especially rich results whenever a doubly excited state 

perturbs a Rydberg series. In barium this is the case for the 6sndl'3D 2 

perturbed by the 5d7d ID 2 state lying between n = 26 and series which is 
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n = 27 of the Rydberg series. Fig. 5 has already shown the effect of the 

perturbing state on the total ionization cross section of the 6s nd-states. 

The possibility of leaving the barium ion either in the ground state or in 

an excited 5d2D state resulting in fast or in slow electrons, respec- 

tively, has been discussed. Photoelectron angular distributions have 

been recorded again in a plane perpendicular to the direction of propa- 

gation of the lasers by rotating half wave plates using the same experi- 

mental arrangement as for the experiment on sodium. For the measurements 

on barium, however, the linear polarizations of the three lasers were 

always parallel to each other. 

a b 

Fig.8: Angular distributions of fast elec- 

trons in photoionization of the 

6s19d3D 2 (a) and 1D 2 s t a t e  ( b ) .  

a b 

Fig.9: Angular distribution of 

fast (a) and slow (b) 

electrons in photoioniz- 

ation of the Ba 5d7dlD 2 

state [18]. 

Fig. 8 shows polar diagrams of the angular distributions of fast elec- 

from the ionization of the 6s 19d ID 2 and 3D 2 states. The trons resulting 

and the characteristic difference between ID 2 and 3D 2 high anisotropy 

intermediate states is obvious. 

Fig. 9 shows angular distributions of fast and slow electrons in the 

case where the laser for the second step is tuned to the perturbing 5d7dlD2 

state. For the least squares fit of the angular distribution of the fast 

electrons the fit function (equ. 9) had to include even Legendre poly- 

nomials up to the sixth order as expected for three photon ionization. 

In the case of the slow electrons, however, where the barium ion is left 

in the excited state the least squares fit yields a 66 which is zero 

within the error bars. In general terms this can be understood since the 
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excited ion can also carry some anisotropy. But it also ensures the re- 

sult of a multichannel quantum defect analysis that the 5d7d state is 

best described in j-j-coupling and to a great extend has the nature of 

the 5d5/2 7d3/2 state [51]. In the photoionization of this state the 

electron will be emitted. A 2D3/2-state excited with linearly 7d3/2 

polarized lasers carries only dipole anisotropy and ~6 in the angular 

distribution is zero. This has already been seen in the sodium experi- 

ment, when using the 2PI/2 intermediate state. Though the 2D3/2 and 

2D5/2 resonances in sodium had not been resolved spectraly the ~J selec- 

tion rule ensured that only the 2D3/2-state was populated. A least 

squares fit to the corresponding angular distribution also gave ~6 = 0. 

a b c d 
il 

e 

Fig.10: Angular distributions of fast electrons in photoionization of the 

6s26dlD2,3D2 , 5d7dlD2 , 6s27d3D 2 and ID 2 state (a-e) [18]. 

The angular distribution of the fast photoelectrons has been measured 

for a series of different intermediate states in the region of the per- 

turbing 5d7d iD2-state (Fig. I0). Here the perturber is designated in the 

LS coupling scheme in agreement with the literature. It has to be kept 

in mind, however, that for this perturber the spin-orbit coupling is very 

that in the region of the perturber the ID 2 and 3D2-series large, so are 

strongly mixed. Talking about a ID 2 or 3D 2 state only means that the 

state has either mainly ID 2 or mainly 3D 2 character. There has indeed 

been some discussion in the literature about the assignment of the ID 2 

and 3D 2 states at n = 26 [19-24]. Far away from the perturber the 

6snd 3D 2 state lies always at a slightly lower energy than the 6snd ID 2 

state. Close to the perturber the resonances can be assigned since the 

characteristic shapes of angular distributions for pure triplet and sing- 

let intermediate states are known from Fig. 8. As a result for n=26 the 

3D 2 state has a higher energy than the ID 2 state, as deduced also from 

lifetime measurements [21]. The assignment in Fig. 5 and i0 that appears 

to be obvious when the angular distributions are measured, is more arbit- 
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rary if only line positions are measured [19,20]. It is also observed 

that the singlet-triplet splitting is especially large for n = 26 and 

n = 27. Both observations indicate that the configuration mixing with the 

perturbing state and the resulting level shifts are larger for the ID 2 

than for the 3D 2 states. The above comments are of course only quali- 

tative, a detailed analysis of these angular distributions is presently 

in progress [52]. 

IV Conclusions 

So far only a few laboratory experiments on photoionization out of ex- 

cited states of atoms have been performed. Reliable cross sections, how- 

ever, are very important e.g. for the interpretation of astrophysical 

data. A severe problem in some experiments is the lack of knowledge about 

the degree of alignment of the atoms in the excited state. This can be 

solved either by optically pumping the atom into only one magnetic sub- 

level [17] or by measuring the photoelectron angular distribution in 

addition to the absolute cross section. 

As was pointed out, the characteristic shapes of the angular distributions 

of photoelectrons may be used to assign excited atomic states. The admix- 

ture of different configurations and the coupling scheme can be deduced. 

As a result one can obtain information needed to calculate atomic wave 

functions. This information is not available if only the energies of ex- 

cited states are measured [24]. 

In the experiments discussed above any complication due to a high laser 

intensity like light shifts was avoided whenever possible. It is, however, 

interesting also to exploit photoelectron angular distributions to experi- 

mentally study high intensity effects in multiphoton ionization [4]. 

Another challenge, theoretically and experimentally as well, is the study 

of laser bandwidth effects [8,53,54]. In this context the recent develop- 

ment of well controlled laser power spectra is very promising [55]. 

In the case of nonresonant multiphoton ionization photoelectron angular 

distributions may be useful for the interpretation of free-free transi- 

tions, i.e. absorption of additional photons when the electron is already 

in a continuum state [39,41]. 
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Abstract 

Recent work is reviewed where i t .  is shown that even in the regime where the tem- 

poral width of the pumping pulse, Tp , and the character is t ic  superfluorescence (SF) 

time, TR , are such that Tp/T R < I ,  the e f fec t  of coherent pumping on a three- level  

system can cause a s ign i f i can t  contr ibut ion to the quantum mechanical SF i n i t i a t i o n  

and corresponding ampli f ied temporal f luctuat ions.  Other recent work shows, fur-  

thermore, that for  Tp/T R > > I ,  but Tp/T D < I ,  where T D is the time delay between 

the pump pulse peak and the SF peak in tens i t ies ,  i n i t i a l  character is t ics of the in- 

jected coherent pumping pulse can have d i s t i nc t  determinist ic  ef fects on SF pulse 

long i tud ina l ,  transverse and temporal evolut ion. 
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I. Introduction 

Superfluorescence [1], (SF), is the phenomenon whereby a collection of atoms 

or molecules is prepared i n i t i a l l y  in a state of complete inversion, and then allow- 

ed to undergo relaxation by collective, spontaneous decay. Since Dicke's i n i t i a l  

work [2], there has been a large amount of theoretical and experimental work deal- 

ing with this process [3]. 

With the exception of the more recent work of Bowden and Sung [4], Bowden and 

Mattar [5], and the even more recent work by Bowden and Sung [6], al l  theoretical 

treatments have dealt exclusively with the relaxation process from a prepared state 

of complete inversion in a two-level manifold of atomic energy levels, and thus do 

not consider the dynamical effects of the pumping process. Yet, al l  reported ex- 

perimental work [3,7-9] has ut i l ized optical pumping on a minimum manifold of three 

atomic or molecular energy levels by laser pulse injection into the nonlinear med- 

ium, which subsequently superfluoresces. 

I t  was pointed out by Bowden and Sung [4] that for a system otherwise satisfy- 

ing the conditions for superfluorescent emission, unless the characteristic SF 

time [1], TR, is much greater than the pump pulse temporal duration T p, i .e . ,  

T R > > mp, the process of coherent optical pumping on a three-level system can have 

dramatic effects on the SF. This is a condition which has not been realized over 

the fu l l  range of experimental data [3,7-9]. 

Using calculational simulation techniques based upon a semiclassical model, Mattar 

and Bowden [5] have studied in detail the effects of coherent dynamical pumping on 

an extended cyl indrical volume of three-level atoms in the regime whereTp/T R > > l ,  

Tp/T D < l ,  where T D is the measured delay time between the pump pulse and the SF 

pulse peak intensit ies. Their calculation includes propagation as well as trans- 

verse and di f f ract ion effects; yet the results demonstrate that specified i n i t i a l  

characteristics of the injected pumping pulse, together with the boundary conditions, 

can have profound deterministic effects upon the SF pulse which evolves, in terms 

of i ts on-axis pulse area, temporal and radial shape, and time delay, T D. Their 

results are in quali tat ive agreement With the predictions made earl ier by Bowden 

and Sung [4] based upon a mean-field approximation. 

Not only has i t  been shown that the dynamics of the pumping can have dramatic 

effects upon the SF pulse evolution [4,5], but also i t  is well established that the 

stat ist ics of the quantum mechanical i n i t i a t i on  of the SF has profound effects in 

terms of macroscopic temporal fluctuations [10,12]. Until quite recently [6], amp- 

l i f i ed  quantum in i t i a t i on  stat ist ics in SF emission have been discussed only with 

regard to two-level systems with the i n i t i a l  condition of complete inversion [lO,12]. 

In their very recent work, Bowden and Sung [6] have presented a more comprehensive 

treatment of SF in the linearized regime of SF in i t i a t i on  by combining coherent pump 

dynamics on the three-level system and simultaneous, as well as subsequent, quantum 

mechanical i n i t i a t i on  of SF emission. 
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The purpose of this chapter is to present a comprehensive review of the recent 

work addressed to the issue of the effects of coherent dynamical pumping on SF pulse 

in i t ia t ion  and evolution in three-level systems. The material for this discussion 

is drawn largely from the work of Bowden, Sung and Mattar and is contained mainly in 

the references 4, 5, and 6. Although the degree of spacial, temporal and spectral 

coherence of the pumping pulse is open to question in most of the reported SF experi- 

ments [9], we have assumed fu l l  coherence, i .e . ,  a coherent state [13] for the in- 

jected pump pulse in order to discuss the effects of coherent dynamical pumping, 

unencumbered. I t  is f e l t  that the effects derived from the coherence aspect of 

the pumping process, and to be discussed here, have been operative to at least some 

degree in al l  reported experimental results in SF [3,7-9]. I t  is hoped that the re- 

sults of the work reviewed here wi l l  stimulate further experimental investigation 

of dynamic pump effects on SF, and in particular, the very interesting aspect of 

deterministic pulse shaping [5] which may lead to further developments in the im- 

porCant area of l ight  control by l ight.  

The next section wi l l  be used to present the quantum mechanical model from which 

the quantum in i t ia t ion  results are derived in the linearized regime of SF in i t ia t ion .  

Linearization and SF in i t ia t ion  during and subsequent to the pump pulse time frame 

wi l l  be presented in Section I l l .  In that section we wi l l  confine our attention to 

results satisfying the condition ~p/T R < l ,  which is the. condition for which SF 

quantum in i t ia t ion  is expected to be most important in terms of subsequent amplified 

temporal fluctuations. Section IV wi l l  be used to discuss the results of SF evolu- 

tion in the nonlinear regime which includes propagation, transverse and diffraction 

effects. The results are calculational and based upon a semiclassical model obtain- 

ed from the fu l l y  quantum mechanical model of Section I I .  Since the results are 

semiclassical, we restr ict  attention in that section to results under the condition 

that Tp/T R > > l ,  Tp/T D < l ,  where the effects of SF quantum in i t ia t ion  are expected 

to be minimized. In that section we emphasize the deterministic effects of coherent 

dynamical pumping on SF pulse evolution. The last section is used for discussion 

of the main results and implications for further theoretical and experimental in- 

vestigation. 

I l l .  Three-level Model for Superfluorescence 

The f i r s t  model for the study of dynamical, effects of coherent pumping on SF 

evolution was the three-level model proposed by Bowden and Sung [4]. The model 

is comprised of a collection of identical three-level atoms, each having the energy 

level scheme shown in Figure l such that the l <-+ 3 transition is induced by a 

coherent electromagnetic f ie ld  pulse of frequency mo and wave vector k o. The tran- 

sition 3 <-+2 evolves by spontaneous emission at a much lower frequency m I t  

is assumed that the energy level spacing is such that e 3 > e 2 > > e l ,  and we also 

retain spontaneous relaxation in the pump transition l <-+ 3 for generality. The 

energy levels e2 and e I are not coupled radiatively due to parity considerations. 

The injected pump f ie ld  is treated as a coherent state [13]. 
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Figure I .  Model three-level atomic system and e lect r ic  f ie ld  tunings under consid- 
eration. For the results reported here, the injected pulse is tuned to the 1 ~ 3 
t ransi t ion.  

In the e lect r ic  dipole and rotat ing wave approximations, the Hamiltonian 
which describes this system of 
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31 " mR 13 " , (2-I)  
j=l 

where the canonical atomic operators R(~ ) obey the Lie algebra defined by the commu- 
tat ion rules [4] 

R!m)' R(n)l = R}~ )~j~mn k~mn (2-2) 
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+ 
and the f ie ld  operators a~, a~ and bc,bc are the usual creation and annihilation 

operators which obey Bose commutation rules. The sums over the index ~ are taken 

as sums over polarizations as well as modes of the electromagnetic f ie ld .  The quan- 

t i t i es  m~J) are Rabi frequencies [14] of the slowly-varying pumping f ie ld  envelope 

at atomic positions r j .  The atom-field coupling factors p~J) and g~J) are ex- 

p l i c i t l y  stated as 

where u(J) and ~J )  are the matrix elements of the transit ion dipole moment for 

the SF and pump transitions, respectively, and the e£ and~  °) are given as 
t 

~L = V e& , e#O) : v ~ , ( 2 -4 )  

where v is the volume of quantization and e& are unit vectors. We shall present 

only an outline of the procedures leading to the desired equations of motion. The 

mathematical details w i l l  be presented elsewhere [15]. 

The Heisenberg equations of motion for the SF fluorescence f ie ld  obtained from 

(2-I) are formally integrated, and then separated into the contribution due to the 

se l f - f ie ld  of the atom, the vacuum contribution and the contribution due to the pre- 

sence of al l  the other atoms ( i .e . ,  the extended dipole contribution). The f i r s t  

mentioned separated f ie ld  leads to natural atomic re laxa t iony ' l  for the 3+-+ 2 

transit ion in the normally-ordered Heisenberg equations and the vacuum contribution 

leads to Langevin force terms f(m) which satisfy the ensemble averages over the 

vacuum fluctuations, 

l ~(T - T') < f+(T) f (T ' )  > 0 (2-5a,b) < f(T) f+(T') > = ~ ; : , 

where N is the total number of atoms and T R is the characteristic SF time ( i .e . ,  

the time for which, on the average, one cooperative photon is emitted), and is given 

by 

T L M (2-6) 

Here, p is the atomic density, L the longitudinal length of the medium, and g 

is the atom-field coupling in the neighborhood of resonance for the SF transit ion. 

remaining slowly-varying, rightward propagating SF f ie ld  A~ -)" is given in re- The 

tarded time T = t - z/c, by 

A~')(z,T) = dT" e R32(Zm,T" ) . (2-7) 

Z m -Zm/c 
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I n  the above expression R32(Zm,m ~) is the s l i ce  averaged [16] ,  r ightward propagating 

s lowly-vary ing atomic var iab le ,  and n s is a normal izat ion due to the in t roduct ion 

of s l i ce  averaged operators [16].  A s im i l a r  expression is obtained in the same way 

fo r  the r ightward propagating, s lowly-vary ing fluorescence f i e l d  A~; ) "  fo r  the pump 

t r ans i t i on .  The Maxwell equations in retarded time coordinates, 

d~/  d~;/ 1 - 
_ I - (2-8a,b) 

dz TR[ R32 ; dz ~RO L R31 

are derived from (2-7) and i t s  counterpart  for  A~O ), respec t i ve ly ,  in a manner s im i l a r  

to that  leading to Eq. (36) of reference I0. The de ta i l s  of the der iva t ion  w i l l  be 

presented elsewhere [15] .  The charac te r i s t i c  time TRO in (2-8b) is defined for  the 

I~-~ 3 t r ans i t i on  in a manner s im i l a r  to (2-6). 

The normally-ordered Heisenberg equations of motion fo r  the r ightward propagating 

atomic var iab les  in the s lowly-vary ing operator representat ion are, 

~ " ~+) ~-~2~ ~ ; ~ ' ½ ~ a ~ - ½ ~ a a ~  d ~  = " rR33 - R32A R 

R32 f (+)  f R23 R31f~ +) " (2-9a) " " f o R l  3 

dR22 = + - + - + - _ 
d~ Y R33 R32A~+) A~')R23 R32f(+) + f R23 (2-9b) 

dRll = + - _ 

d~ ~'oR33 ~ / +  ~r/R13 - 1 *-  + "  f ~ + ) + f o R 1  (2-9c) + ½mRR31 + 2mRRI3 R31 3 

. " 

d~ ~(°~31 mo ) - -A~-)R21 + A~R)(R33"Rll) 

d#32 
dT 

I ~ = 
+ 2mR (R33-RII) f R21 + f (R33-RII )  (2-9d) 

[i~32-~ - ½ r]~32 + A~-) (a3~-a22) - A~)~12 

1 *-  fo~l (2-9e) - 2 mRRI2 + f(R33"R22) - 2 

dRl2 
~ - ~ o ~ ~ +  ~ - ~  + ~ 2 ~  ~+ ½°a~ 

+ foRl3 + R32 f (+)  (2-9f)  
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The f i e l d  var iab les  A~ -)  [ and A~R) ( -  and the atomic var iab les  Rk~ and Rkk are to be 

understood as funct ions of  z and T , and the f l u c t u a t i n g  force terms f and fo 

can be shown to be funct ions of retarded time z only [6 ,15 ] .  

The Langevin terms fo corresponding to the 1 ~ 3 t r a n s i t i o n  obey re l a t i ons  

i den t i ca l  to (2-5) but w i th  T R replaced by TR0. The Langevin force terms in (2-9) 

give r i se  to Gaussian random quantum i n i t i a t i o n  s t a t i s t i c s  in both al lowed t ran-  

s i t i ons  [10-12] .  The fac tors  6 and 7 appearing in (2-9) are given by 

= m ° - m ; F = ¥ + ¥o' where is the natural l i fet ime for the 1 <~+ 3 

transition. 

The equations (2-8) and (2-9) form the working equations for the calculations 

presented in the following sections. The pumping f ie ld  envelope m R is taken as a 

rightward propagating pulse which is injected into the medium with specified i n i t i a l  

and boundary conditions and in general is described by a classical Maxwell equation. 

I I I .  Pump Dynamic Contr ibut ions to Quantum I n i t i a t i o n  of  SF 

This sect ion is  used to examine the e f f e c t  of  dynamical coherent e x c i t a t i o n  of 

the 3 ,-~ 1 t r a n s i t i o n  on the quantum mechanical i n i t i a t i o n  of  SF in the 3K-~ 2 

t r a n s i t i o n .  Plane wave propagation is assumed and the e x c i t a t i o n  (pumping process) 

is taken as a r ightward propagating square pulse of  Rabi frequency m R and temporal 

durat ion Tp. The pump f i e l d  is t reated c l a s s i c a l l y ,  i . e ,  as a coherent s tate [13] ,  

and l o n g i t u d i n a l l y - u n i f o r m  in the atomic medium, which has been shown [4a]  to be 

j u s t i f i e d  provided the pump pulse time durat ion T is much l a rge r  than the l ong i -  
P 

tudinal transit time in the medium, TE, i .e . ,  Tp > > T E. The i n i t i a l  condition at 

retarded time m = 0 is taken as al l  the atoms in the ground state Cl" 

In order to direct our attention to the quantum mechanical in i t i a t ion  process 

during SF fluorescence buildup, we confine our attention to the linearized regime 

of small SF signal (negligible population in level 2 compared to level 3), 

d 
< R22 > ~ ~ < R22 > ~ 0 , 

and strong pump [4 ] ,  

(3-1a) 

~R~R > > 1 (3-1b) 

Since we are concerned about dynamical effects which occur temporally in the time 

frame T ~ T R we neglect terms in the equations of motion (2-9) which make temporal 

contributions on the order of y - I  and ¥~I . Also, we neglect SF competition in 

the pump transition l <-~ 3 with the assumption, 

mRTR0 > > mRm R (3-2) 

I f  the l i n e a r i z a t i o n  condi t ions (3 - I )  and (3-2) are used in conjunct ion wi th  (2-8) 

in the equations of motion (2-9),  the f o l l ow ing  set o f  coupled equations are generated 

in the retarded time T = t - z/c , 
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dR33 = _ - dR31 = 
dT mRR31 ; de mR (R33 - ½) (3-3a,b) 

dR32 
(3-3c) 

dRl 2 
dT - 2- C°RR32 + ' d--{ = m-~ R32 " (3-3d,e) 

The las t  terms in (3-3c) and (3-3d) are Langevin force terms which give r ise to 

Gaussian random quantum i n i t i a t i o n  s ta t i s t i cs  in the SF evolution [10-12] and are 

wr i t ten e x p l i c i t l y  

f~-)(Z,T) : f(T) R33(Z,T ) ; h~')(Z,T) = f(T) R31(Z,T) , (3-4a,b) 

where f(~) is an operator which gives r ise to vacuum f luctuat ion contributions and 

sa t i s f ies  the conditions (2-5). 

I t  is noted from (3-3a,b) that the l inear ized Heisenberg equations of motion for 

R33 and R31 exh ib i t  no operator character and form a closed set in themselves. We 

thus take them as expectation values, and m R and R31 have been taken as real without 

loss of general i ty.  Because of the strong pump approximation (3-1b), the co l lec t ive  

pump t rans i t ion variables R33 and R31 are dynamically determined by the pumping pro- 

cess en t i re l y  and can therefore be replaced by the i r  factor ized expectation values 

in (3-3c,d). Then the only operator character in these equations are the Langevin 

force terms f~-)" and h~ - ) "  Thus, the equations (3-3) can be regarded in terms of 

expectation values with respect to the atomic system, but not the f i e l d  reservoir ,  

i . e . ,  the ordering of products of the Langevin force terms in expectation values is 

essent ia l ,  as exhibited in (2-5). From this point on, Eqs. (3-3) are regarded in 

terms of expectation values with respect to the atomic system. 

I t  is re-emphasized that the l inear iza t ion  conditions (3- I )  have resulted in a 

decoupling of the pump term equations (3-3a,b) from the remainder. Thus, for a l l  

the atoms i n i t i a l l y  in the ground state at T= 0, we have 

mR - 1 
R33 = sin 2 ~ T  ; R31 = - ~ sin mR T (3-5) 

The remainder of the equations of motion,(2-Sa), (3-3c)-(3-3e) can be solved by La- 

place transform. These combine in the Laplace regime, in the l i m i t  (3-1b) and to f i r s t  

order in Tp/T R , to give the resu l t  in terms of R~)(S,T) 

d2R3~ )(s'T) + 1 2 ~(o _ U(T) (3-6) 
i ~  



and 

dT' w i n  OR ( T  - T*  ) . 
S 2 

The n e x t  h i g h e r  o rde r  c o n t r i b u t i o n  i n  ( o ~ T ~ ) - '  i s  Ai:)(s,T), where 

( S T )  = g i i ) ( S , T )  

and i s  determined by 

where 

+ - T ~ L S  W R  s i n  wRr iRi;)(s,r) 

n-1 
Z I t shou ld  be no ted  t h a t  R&) (z ,T )  -. and t h a t  succeeding terms i n  t h e  expan- 

s i o n  a re  i n  t he  r a t i o  ( u ~ T ~ ) - ~  ( i  .e., aR-rR i s  t he  expansion parameter [15 ] ) .  

The " t i p p i n g  angle",  ~ ( Z , T )  i s  d e f i n e d  as [10,12] 

and we a re  i n t e r e s t e d  i n  i t s  va lue  i n  t h e  l i n e a r i z e d  SF regime T > T ~ ,  aR = 0. 

I n  t he  t ime  frame a f t e r  t h e  pump i s  t u rned  o f f ,  i . e . ,  f o r  i > T t h e  Langevin terms 
P' 

(3-4) become 

and equat ions  (3-3)  a re  so l ved  f o r  wR = 0  w i t h  t h e  i n i t i a l  cond i  t 

va lue  o f  each v a r i a b l e  a t  T = T The procedure a l ready  out1  i n e d  
P' 

f o rwa rd  way t o  t he  r e s u l t  i n  l o w e s t  o r d e r  [6,15], f o r  T' 
= T -  i ~ y  

. ions  be ing  t h e  

l eads  i n  a  s t r a i g h t -  

T ' >  0 ,  
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]I 2 
e2(  ") -- I o 2 R < 3 2 ' p  

4R~3(TP) dT'" I o 2 ~L-~ R R33(~p)Z(T'-T'') 
+ NTR "o 

which is the main result of this section. 

(3-14) 

I t  is interesting to compare the result (3-14) with the corresponding result from 

the two-level model with an i n i t i a l  state of complete inversion ( i .e . ,  impulse ex- 

citation) of reference 10, Eq. (64). We see that the two cases d i f fer  by the f i r s t  

term in (3-14) as well as the factor R~3(Tp)_ of the square of the pump induced in- 

version onto the second term and the appearance of R33(~ p) in the argument of the 

Bessel's functions I o. In the linearized regime of references 10-12, R33 = l ;  in 

our case this need not be so. But,  i f  mRTp = ~ , i .e . ,  a T-pump pulse, then the 

second term in (3-14) is exactly equivalent to Eq. (64) of reference 10. However, 

the f i r s t  term in (3-14) s t i l l  remains, which arises from spontaneous relaxation 

of the 3 ~-+ 2 transition during the dynamics of the pumping process. The f i r s t  

term in (3-14) therefore, uniquely characterizes the effects of dynamical pumping 

in a three-level system on SF quantum in i t ia t ion.  

The evolution of the expectation value in the f i r s t  term of (3-14) gives 

< R(O)(T )R(°) (Tp)>m(~ s i n 2 2 3  ' P 32 mR--~P-2 )TRTP (3-15) 

to f i r s t  order in Tp/T R. Thus, for a ~-pulse, impulse excitation, i .e . ,  m RT p = 

T ÷ 0, all effects of the pump dynamics vanish, and (3-14) reduces to the results 
P 

of reference 10, Eq. (64). 

However, i t  is apparent that Tp/T R < < l is a condition not satisfied in SF ex- 

periments over the fu l l  range of atomic densities [3,7-9], and therefore, the effects 

of the dynamical pumping process on amplified quantum in i t ia t ion could be quite 

important, depending of course upon the degree of coherence of the pumping pulse. 

The nonlinear regime for SF evolution for the conditions Tp/T R > > l ,  Tp/T R < l ,  

where amplified quantum in i t ia t ion effects are expected to be less important, is 

discussed in the next section in terms of a semiclassical numerical calculation Of 

Mattar and Bowden [5] in which propagation and transverse effects are taken into 

account. 
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IV. Determin is t i c  Ef fects  of  Pump Dynamics in the Nonl inear Regime of  SF 

Some aspects of de te rm in i s t i c  e f fec ts  of  coherent pump dynamics on SF pulse evolu-  

t ion  in the nonl inear  regime of SF w i l l  be presented in  t h i s  sect ion.  We consider 

conditions for which Tp/T R > > I; Tp/T D < I. Quantum init iation is expected to play 

a less important role in this situation than for the opposite condition, Tp/Z R ~ l  

discussed in the previous section for the linear regime of SF. The coherence induced 

by the pumping process, in this case, is expected to overwhelm the effects of quan- 

tum initiation. 

The calculation of SF pulse evolution in the nonlinear regime is necessarily a 

calculational problem i f  propagation is explicit ly included. We use an algorithm 

presented elsewhere [17] and the model defined by Eqs. (2-9) to analyze the effects 

of coherent pump dynamics, propagation, transverse and diffraction effects on SF 

emission. To faci l i tate numerical calculation, Eqs. (2-9) are taken in their fac ~ 

torized, semiclassical form [5] with the field A~ -)" replaced by its classical repre- 

sentation which is described by Maxwell's equation. The pump field m R and fluores- 

cence field < A(R ) > are determined dynamically and spacially in retarded time, by 

ini t ial  and boundary conditions and the equations 

+ = d (4-I  a) J , - I v 2  X° T-~ 

P P Yo ( v311 

-I 2 -X I + B I Y1 = d -U32 
~s Vp Y ~ X V32 

(4-1b) 

In the above equat ions, X, 

pec t i ve l y ,  of the SF f i e l d  

Y, and Xo,Y o are the real and imaginary components, res- 

< A~ +) > and m R , respec t i ve l y ,  i . e .  

< A~ -)  > m R 
X + iY ; - -  = X + iY ° 

o 
(4-2a,b) 

in units of the dephasing rate ¥~ taken now as phenomenological ( i .e.,  homogeneous 

broadening) and is assumed to be the same in the equations of motion for all off- 

diagonal matrix elements. The atomic variables appearing on the right-hand side of 

(4-I) are real quantities and are defined according to 

Rk~ = ½ (Uk~ + iVk~) k > ~ (4-3) 

The f i r s t  terms on the le f t -hand  side of Eqs. (4 - I )  are the t ransverse parts of  

Maxwel l 's equations in  c y l i n d r i c a l  symmetry, where 

p ~p 
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and p = r / rp  where r is the radial distance and rp is a character is t ic  radial 

width. The longitudinal spacial coordinateqps = z geffp s, where geff  is the on-axis 
e f fec t ive  gain, 

U31 ! 
g e f f  = n ~ c T2 

Ps 
(4-4) 

where N is the atomic number density (assumed long i tud ina l l y  homogeneous) and n 

is the index of refract ion assumed here to be ident ical  for  each t rans i t ion wave- 

length. The subscripts p and s represent the pump and SF t ransi t ions,  respec- 

t i v e l y .  The quanti ty 

N(r) (4-5) d = N 
o 

governs the re la t i ve  radial population density d is t r ibu t ion  for active atoms, which 

could have a var ia t ion,  say, for an atomic beam. F ina l ly ,  the f i r s t  factors on the 

f i r s t  terms of (4- I )  are the reciprocals of the "gain length" Fresnel numbers [5] 

defined by 

2~r~ (4-6) 
= -I  

Ps Xps geffp s 

I t  is seen from (4-I) that for suff iciently large Fresnel number ~L the corrections 

due to transverse effects become negligible. The "gain length" Fresnel numbers are 

related to the usual Fresnel numbers F = 2~r~/~L , where L is the length of the 

medium, by 

~-/F = geffL (4-7) 

i . e . ,  the total  gains of the medium. In the computations, d i f f rac t ion  is e x p l i c i t l y  

taken into account by the boundary condition that p = Pmax corresponds to com- 

p le te ly  absorbing wal ls.  

The Langevin force f luctuat ion terms f and fo appearing in Eqs. (2-9) are 

taken as complex valued c-numbers, 

f ÷ If l e i~ ; fo ÷ rfol ei~° (4-8a,b) 

The amplitudes Ifl and Ifol obey Gaussian random probability distributions P(f) 

and Po(fo), where, in accordance with (2-5a), 

l exp (-If[2/<o>) , (4-9a) p ( I f l  2) - ~<~> 
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1 exp ( - I fo I2 /<  ~o >) ' (4-9b) Po(' fo ' 2 ) [ [  : 7< ~ > 
0 

where <~> = (N~RL/C)'I, < ~o > = (NTRoL/C)-I" Since the phases ~ and ¢o are i n i t -  

i a l l y  completely undetermined, t he i r  s t a t i s t i c a l  d i s t r i b u t i o n s  are defined as uni-  

form on a f ie ld  0 ~ ~ 27. The Langevin force contributions to the semi- 

@o 
classical equations of motion give rise to in i t i a t ion  of fluorescence in the 3 "-+ 2 

transition when the 3 <-+ l transition is coupled by the pumping f ie ld  m R . Normally, 

one can ignore fluorescence in the 3 +-~ l transition, i .e . ,  ignore contributions 

from fo" 

Thus, by u t i l i z ing  the relations (4-9), a complete ensemble simulation can be con- 

structed, and in this way the manifestations of amplified quantum in i t ia t ion  can be 

calculationally analyzed over the fu l l  range of dynamical SF evolution. This amounts 

to generating the calculational results, using the semiclassical representation of 

Eqs. (2-9) for specified i n i t i a l  and boundary conditions, for each of the values 

selected for [ f l ,  [fo [ , ~ and @o according to the stat ist ical  distributions 

(4-9). One then must take the ensemble averages and associated variances. This 

is necessarily a very expensive calculation. For the results [5] presented here, 

we have ignored fluorescence in the pump transition and taken what amounts to the 

average value of f according to (4-9a) and an arbitrary value for @ , (see 

Appendix of reference 5), so these results must be interpreted as ensemble averages. 

I t  turns out that for the results to be discussed [5], this is equivalent to an av- 

erage "tipping angle" on the order [18] of lO -3. The fu l l  calculational stat ist ical 

treatment wi l l  be presented elsewhere [19]. The material parameters chosen for 

these calculations are arbitrary, but correspond roughly to those for optical ly- 

pumped metal vapors. 

The i n i t i a l  and boundary conditions are such that all the atomic population is 

in the ground state e I at T = O. The pumping pulse which pumps the l +-~3 transit- 

ion is injected at z = 0 and is rightward propagating, and i ts i n i t i a l  characteris- 

tics are specified at z = O. The SF pulse subsequently evolves in z, p , and 

due to the in i t ia t ion  of fluorescence instigated by Ifl and @ as indicated in the 

equations of motion (2-9) in their semiclassical form discussed above. The pump 

pulse, whose i n i t i a l  characteristics are specified at injection and the SF pulse 

co-propagate and interact via the nonlinear medium. We shall show that certain 

i n i t i a l  characteristics of the injected pumping pulse have deterministic effects upon 

the SF pulse evolution, thus demonstrating a new manifestation of the phenomenon of 

l ight  control by l ight  (5]. 

Figure 2 shows results of the numerical calculations for the transverse integrated 

intensity profiles for the co-propagating SF and injected pulses at the specified 
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Figure 2. Rad ia l l y  i n teg ra ted  normal ized i n t e n s i t y  p r o f i l e s  f o r  the SF and i n j ec ted  
pulse at  z = 5.3 cm pene t ra t ion  depth fo r  three d i f f e r e n t  values f o r  the i n i t i a l  
on-ax is  i n j e c t i o n  pulse area @p. The SF pulses are i nd i ca ted  by a, b, and c, where- 

as the corresponding i n j ec ted  pump pulses are labe led  by A, B, and C. The i n jec ted  
pulses are i n i t i a l l y  Gaussian in r and T w i th  widths (FWHM) r ° = 0.24 cm and 

Tp = 4 nsec, r espec t i ve l y .  The leve l  spacings are such tha t  (c3-Cl ) / (m3-e2)  = 

126.6. The e f f e c t i v e  gain f o r  the pump t r a n s i t i o n  gp = 17 cm-I and tha t  f o r  the 

SF t r a n s i t i o n  gs = 291.7 cm-lo The ga in - leng th  Fresnel numbers f o r  the two t ran-  

s i t i o n s  are V=~p = 16800 and ~ = 2278. The r e l a x a t i o n  and dephasing t imes are 

taken as i d e n t i c a l  f o r  a l l  t r a n s i t i o n s  and are given as T 1 = 80 nsec and T 2 = 

70 nsec, r espec t i ve l y .  The i n j ec ted  pulse i n i t i a l  on-ax is  areas are:  (A) @p = 

, (B) Op = 2~ and (C) Op = 37. Here, T R = 90.5 psec. 

penetration depth in the nonlinear medium. These profi les correspond to what would 

be observed with a wide aperture, fast, energy detector. The pumping pulses are 

labeled by capital le t ters,  and the corresponding SF pulses are labeled by the 

corresponding lower case let ters.  Each set of curves represents a di f ferent i n i t i a l  

on-axis area for the injected pump pulse, i . e . ,  curve A is the reshaped pump pulse 

at z = 5.3 cm which had i ts  i n i t i a l  on-axis area specified as 0 = ~ , and curve a 
P 

is the resulting SF pulse which has evolved. All other parameters are identical for 

each set of pulses. The i n i t i a l  conditions are those already discussed ear l ier .  

These results clearly indicate the coherence effect of the i n i t i a l  pump pulse 

area on the SF signal which evolves. Notice that the peak intensity of the SF 

pulses increases monatonically with i n i t i a l  on-axis area for the pump pulse. This 
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is caused by self-focusing due to transverse mode coupling and propagation. For 

instance, a 2-~ injection pulse would generate very small SF response compared to 

an i n i t i a l  T-injection pulse for these conditions at re lat ively small penetration z, 

or for the corresponding case in one spacial dimension. Even so, the peak SF in- 

tensity is approximately proportional to the square of the pump-pulse i n i t i a l  on-axis 

area, whereas the delay time m D between the pump-pulse peak and the corresponding 

SF peak is very nearly inversely proportional to the input pulse area. The temporal 

SF pulse width at ful l-width half-maximum (FWHM) m s is approximately invariant with 

respect to the injection pulse area. 

Since the average values of m D and the peak SF intensity are important quantities 

for interpreting experimental results with theories of SF, the manner in which the 

pump pulse coherence and i n i t i a l  on-axis area affect these quantities is seen to be 

of extreme importance in any analysis. 

Figure 3 shows the effect upon the SF pulse of variation in the i n i t i a l  temporal 

width at half maximum intensity for the pumping pulse. As the i n i t i a l  temporal width 

of the injected pulse mp becomes smaller, the SF delay time m D increases, whereas 

the peak SF intensity decreases, and the SF temporal width m s remains very nearly 

fixed. 
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Figure 3. Radially integrated normalized intensity profiles for the SF and injected 
pulses at z = 5.3 cm penetration depth for f ive different values for the i n i t i a l  tem- 
poral width of the injected pulse. The i n i t i a l  on-axis area of the injected pulse 
is gp = ~ and the pump transition and SF effectiv,e gains are gp= 17.5 cm-I and gs = 
641.7 cm-I, respectively. All other parameters except for the Fresnel numbers are 
the same as those for Fig. 2. The injected pulse i n i t i a l  temporal widths at half 
maximum are: (A) Tp = 4 nsec; (B) mp = 3.3 nsec; (C) mp= 2.9 nsec; (D) mp= 2.5 nsec; 
and (E) mp = 2.2 nsec, 
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I t  is clear from these resul ts  that there ex is ts  an approximate l inear  re la t i on -  

ship between the time delay T D , between the peak SF i n tens i t y  and the correspond- 

ing pump-pulse i n tens i t y ,  and the i n i t i a l  temporal width T of the pump pulse. 
P 

These resul ts  generate the fo l lowing empirical formula for  T D as a funct ion of 

Tp: 

T D = 0.375 T R f nt4  ] 2 (4-10) 

where [20] T R = 2 T2/geffs z, and YR = TR I" 

The re la t ion  (4-10) is at least  in qua l i t a t i ve  agreement with the analyt ica l  

predict ion made in reference 4(b), Eq. (5.1),  based upon mean-field theory. The 

f i r s t  term in (4-10) was chosen to conform wi th the quantum-mechanical SF i n i t i a -  

t ion resu l t  [6,10-12]. The quant i ty  @o can be interpreted as the "e f fec t ive  

t ipp ing angle" for  an equivalent T - i n i t i a l  impulse exc i ta t ion ,  i . e . ,  for  Tp ÷ O, 

which i n i t i a t e s  subsequent SF. I t  is to be noted that the value for  G o is depen- 

dent upon our value for  I f l  , Eq. (2-5a); however, T D varies less than 25% for  

order-of-magnitude changes in I f l  2. 

These resul ts  emphasize the importance of the i n i t i a t i n g  pulse character is t ics  

in SF pulse evolut ion,  and the e f fec t  of SF pulse narrowing with approximate pulse 

shape invariance by increasing the i n i t i a l  temporal width of the in jected pulse. 

I t  is emphasized that a l l  other parameters, inc luding the i n i t i a l  value for the in-  

jected pulse on-axis area, are ident ica l  among these sets of curves. 

V. Conclusions 

The ef fects on SF evolut ion of coherent pumping on a three- level  system have been 

discussed in th is  Chapter. The pump dynamical cont r ibut ion to SF quantum mechani- 

cal i n i t i a t i o n  for  the condit ion Tp/T R < 1 was discussed in Section I I I .  The main 

resu l t  is the expression for  the " t ipp ing angle", Eq. (3-14) in the l inear  regime 

of quantum i n i t i a t i o n .  The f i r s t  term in (3-14) is due en t i r e l y  to spontaneous 

re laxat ion in the 3 K-~2 t rans i t i on  during the time frame of dynamical pumping on 

the 3 , -~I  t rans i t i on .  To f i r s t  order in Tp/T R i t s  evolut ion is given by (3-15). 

For a T-impulse exc i ta t ion ,  these resul ts  reduce to the two-level model SF re- 

su l ts  [ I 0 ] .  Even though the degree of coherence in most of the reported SF experi-  

ments is uncertain and TD/T R < 1 is a condit ion not sa t i s f ied  in most of the reported 

SF experiments over the f u l l  range of atomic densi t ies,  the resul ts  reported here 

indicate that the pump dynamics can have a s i g n i f i c a n t  cont r ibut ion in the ef fects 

of observed amplif ied quantum i n i t i a t i o n  in SF temporal f l uc tua t ions .  
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Results of numerical simulation in the f u l l  SF pulse evolution for several cases 

where Tp/T R > > I ,  Tp/T D < 1 were discussed in Section IV. Even though propa- 

gation, transverse and d i f f rac t ion  ef fects were e x p l i c i t l y  taken into account in 

the calculat ion,  i t  was shown that certain i n i t i a l  character is t ics of the in jec t -  

ed pump pulse cause determinist ic manifestations in the SF which evolves. The 

resul ts are interpreted as ensemble averages, although the effects of quantum 

i n i t i a t i o n  are expected to be r e l a t i v e l y  less s ign i f i can t  in the nonlinear regime 

in these cases. I t  is f e l t  that determinist ic ef fects of the type reported and 

analyzed here may have been operable in some of the data reported in SF experiments. 

The phenomenon is ,  however, quite interest ing in i t s e l f  from the standpoint of the 

physics of co-propagating d i f fe ren t  wavelength pulses coupled via a nonlinear medium. 
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I .  INTRODUCTION 

Coherent population trapping occurs in a wide var ie ty  of s i tuat ions,  some of 

which are l i s ted  in Table I .  A more complete survey of the relevent work is given 

in Reference [5] and within other references l i s ted  in Table I .  In each case a rate 

equation approach based only on populations would lead to the expectation that the 

populations of certain states would decay to zero, due to the presence of i r rever -  

s ib le loss processes. However, the presence of coherence between the states, speci- 

f ied via o f f  diagonal density matrix elements which appear in a master equation anal- 

ys is ,  can in certain circumstances lead to a steady state solut ion where the popula- 

tions of such po ten t ia l l y  decaying states are non zero. Thus coherent population 

trapping has occured, the f ina l  quantum state then being immune from further decay. 

As the long time spectral features of a system re f lec t  the time constants of i t s  

coupled loss processes,then in coherent trapping si tuat ions we would expect features 

with narrower widths than the normal decay widths to appear. 

Coherent trapping has ramif icat ions in spectroscopy, in the search for  narrow 

features on which to base improved time standards [7],and in state select ive photo- 

exci tat ion processes where population trapping would r e s t r i c t  the overal l  y ie ld  of 

the desired product [5] .  

2. COHERENT TRAPPING CONDITIONS 

Some of the essential conditions for coherent trapping phenomena can be under- 

stood from prototypes of Type 1 and Type 2 systems, which are analysed using master 

equation methods [ 8 ] , [ 9 ] .  The system ( for  example an atom plus pump laser mode(s) 

or an atom in an external s ta t i c  f i e l d ) ,  containing states I I>,  12> for  Type I ,  and 

I I>,  12> and 13> for  Type 2 (a l l  with s im i la r  energies) also contains a much lower 

energy state Ig> (mo ~ Wig' i =1,2,3).  The system also has an interact ion V with a 

large quantum system or reservoir ,  i n i t i a l l y  in i t s  lowest state Is> ( for example, 

the unoccupied spontaneous emission modes of the quantum EM f i e l d )  and into which 

i r revers ib le  system energy losses occur. V is assumed to be of the form (SR + StRt), 

where S, R are system, reservoir  operators. Type 1 loss processes are ll>l~>÷Ig>IB>, 

12>l~>÷Ig>l~>, whi ls t  those for  Type 2 are 13>l~>÷Ig>l~> (15> is an excited reservoi r  

state) .  An internal system interact ion V S ( for  example, atom-laser mode interact ions 

or atom-external s ta t i c  f i e l d  interact ions) leads to coupling between the system 

states 11>++12> for  Type l ,  11>++13> and 12>++13> for  Type 2. We assume a l l  system 
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Table I. 
Situation 
CTzpe l )  I l> 
Spontaneous IO>AII> B 
emission from 
two identical 
two level (JO>, 
Jl>) atoms 
A, B. [ l ]  
Weak inter- ]l,O> 
action decay 
of Ko,K-- Q K0 K0 
mesons [2] 

Pseudoauto- 10,na,nb > 
ionizat ion. 
Jl> excited 
to continuum 
states if> 
via laser a, 
J0> via laser 
b. [3] 

Situation Jl> 

Lambda J0,na,nb > 
system 
coupled to 
lasers a,b. 
10> excited 
to Jl> via 
laser a,12> 
excited to 
Jl> via laser 
b. [4] [5] 

Examples of Coherent trapping situations 

t2> IL>, 
ll>AlO> B IO>AIO>B[I~ > 

Loss processes 
11>Io~>+Io>11~> 

IO,l> Io,o~II ,I> K 0 7+ + ~- 

Ko + 

Jl ,na+l ,nb-l > J f,na,nb-I > J O,nb>+J f,nb-l> 

J l ,na+l >-~I f,na> 

12> J3> 

[2,na-l,nb+l> Jl,na-l,nb> 

Ladder JO,na,nb > J2,na-l,nb-l> Jl,na-l,nb> 
system 
coupled to 
lasers a,b. 
JO> excited 
to Jl> via 
laser a. II> 
excited to 
J2> via laser 
b. [4] [5] 

Situation ! I> 12> 13> 
(type 3) 
Laser excita- [2,n-l> 13,n-l> l l ,n> 
tion of two 
nearby excited 
states J2>, 
J3> from lower 
state Jl> [6] 

JL>. Loss processe.s 

( i )  Jm,na-l,nb>Jl~> ( i )  Jl>J0~> 

÷Im>ll~> 
Spont. emission 

( i i )  Jf,na-2,nb > ( i i )  Jl,na-l> 
J f ,na-I ,nb-I > +j f ,na- 2> 

[ l,nb> 
+Jf,nb-l> 
Photoi oni za- 

tion 
( i )  Jm,na-l,nb>Jl~> ( i )  As above. 

I L> Loss processes 

I1 ,n-l>llx> 12>Iox>+II>II~ > 
13>{ox>+Jl>llx> 
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TYPE 1 TYPE 2 

12> 12> 
11> ~ : ~  IL> 11> > 13~> ' iL> 

TYPE 3 

12> JL> 13> , i ,  - . .~  

~ . Three types of coherent trapping for states II>, 12>. Processes li>-~IL> 
irreversible losses. Processes |i>K-+lj> indicate reversible couplings. 

interaction matrix elements are real and that <~IRIB> p 0 only i f  ~B~ ~ O. Master 
equations governing the reduced density matrix elements which describe the system 
behaviour are obtained using the Markoff, weak coupling approximations (for treating 
relaxation processes) and the secular approximation (rotating wave approximation of 
the second kind) [8] [9]. 

For the Type l prototype the important master equations are: 

i ~ l l l  - i r l  "Y~2 YI2 0 
, °  

1°12 

i~21 

i~22] 

-Y~2 ~-½i(rl+r 2) 0 YI2 

YI2 0 -a-½i(rl+r2) -Y~2 

0 Yl2 -Y~2 -it2 

- ° I I  1 

°12 I 

021 

_ ~22 ] 

(la) 
(Ib) iGgg : i r l  ° l l  + (YT2"YI2) °12 + (Y~2-YI2) °21 + it2 a22 

The r i (i=l,2) are the usual decay rates of the states, ~ is the transition 
frequency between ll>, 12>, shifted due the system-reservoir interaction. (See [8] 
for formulae). The quantity Yl2 is given in terms of (real) Vl2, ~12' Bl2 as: 

YI2 = v12 + ~12 + i~12 (2a) 

with Vl2 = <llVsl2> (2b) 

~12 =~l <l iS1g><giSt12> Z I<~LRI~>I2B "o ~" {~ _--~z-~--] (2c) 
BI2 = ~-~ <I LSlg><glS+12> Z l<~1Rl~>12a(%~-%) (2d) 

B 
I t  can also be shown that: B#2 = ~?i?2 (3) 
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The quant i t ies -i(~12 + i~12), - i ( -~12 + i~12) are o f f  diagonal Markovian relax- 
ation matrix elements, which couple populations to cOherences and arise from the 

ind i rec t  interact ion process l l>]~>-~[g>l~-I2>I~>. Although known in several con- 

texts ( [ 6 ] , [ 8 ] , [ 9 ] , [ 1 0 ] )  such o f f  diagonal relaxat ion terms are usually ignored . 

However they are v i ta l  to the understanding of coherent trapping in the Type 1 (and 

Type 3) s i tuat ion.  

We search for  a steady state solut ion for  which the l e f t  hand sides of ( I )  are 

zero and in which the populations Ol i ,  022 are not both zero. By adding the f i r s t  and 
fourth of ( la) we see that i f  ( la) is sat is f ied then (Ib) is also. Secondly, the 

coherences must be non zero in the steady state solut ion,  thus establ ishing that 

population trapping is coheremt population trapping ( i f  ~12=o21=0 then FI~II=O and 

r2~22=0 thereby implying no trapping). 
The existence of a steady state solution requires that the determinent of the 

symmetric 4 x 4 matrix A in ( la) is zero, leading to the trapping condit ion for th is 

Type 1 prototype: _2(FI_F2 ) 

6 - FIF2 BI2(VI2+~I2 ) (4) 

The internal system coupling required is related to the shi f ted t rans i t ion frequency 

via the various relaxat ion parameters. The v i ta l  role of the o f f  diagonal relaxat ion 

parameters can be seen by repeating the analysis with m12=~12=0. The condition for  

a non zero steady state solut ion 6 = ±(rl+r2)/4v124 - (2v122+r l r2)2/2Flr2 is imposs- 
ib le.  This shows for  example that coherent trapping does not occur for  the nearby 

2s, 2p states in hydrogen coupled by a s ta t ic  e lec t r i c  f i e ld .  Condition (4) shows 

that trapping can occur for  the case of two ident ical  two level atoms (~=0, FI=F2 ). 

The fu l l  time dependent solut ion of ( la)  is given in terms of the eigenvalues and 

l e f t  and r ight  eigenvectors of A [5 ] , [11 ]  and the i n i t i a l  conditions on Oli etc. For 

the case where the trapping condit ion (4) holds, only the single zero eigenvalue 

contributes at long times. We f ind that:  

 ll(O)l 
Flr 2 

~12(~). I r2~ll(O) + 2-~12 (~12(0) + ~21(0))+rI~22(0)1 

o21(~) = (r I + r2)2 

F r 2 

! r I r 2 

2~12 (5) 
r l r  2 

! 2~12 

r I o22(~) ' 

Thus for  almost al l  i n i t i a l  conditions there is trapped populatio~ at long times i f  

(4) holds, and the non zero a12, o21 confirm that coherence is present. For the case 

where a l l (O)= l ,  ~12(0)=~21(0)=~22(0)=0, the total trapped population is r2 / ( r l+ r2 ) .  
The Type 2 prototype can be analysed s imi lar ly .  The important master equations 

are! .  
Io11 = - v13~13 + v13~31 (6a) 

i~12 = (613 + 632)a12 - v23~13 + v13a32 (6b) 
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i~13 = - v13~ll  - v23~12 + (613 - ½ir3)ql3 + v13o33 (6c) 

i~22 = - v23~23 + v23o32 (6d) 

i~32 = v13~12 + v23a22 + (632 - ½ir3)~32 - v23~33 (6e) 

i~33 = v13~13+v23~23 - v13a31 - v23~32 - ir3q33 (6f)  
i~gg = ir3~33 (6g) 

where 6.. are the t r ans i t i on  frequencies (sh i f ted  by system reservo i r  i n te rac t i ons ) ,  
lJ 

v13, v23 are real matr ix elements of the in te rna l  system in te rac t ion  V S and r 3 is the 

decay rate of  13>. Only the intermediate s tate 13> undergoes decay, so no o f f  diago- 

nal re laxat ion  elements are involved. 

Again a steady state so lu t ion is sought fo r  which the l e f t  hand sides of (6) are 

zero. Adding the r i gh t  hand sides of (6a), (6d), (6f)  we see that  trapping impl ies 

that  ~33=0, the population of the decaying intermediate state is thus zero. (6g) 

, * then shows that  o13 then is sa t i s f i ed .  (6a) (6d) together with ~32=~23 * ,  ~13:~31 

and ~32 must be real and (6f)  is automat ica l ly  s a t i s f i e d .  Equations (6b), (6c),  (6e) 

give on being broken up in to  real and imaginary parts:  

(613 + 632)o~2_ - v23~13 - v13~32 = 0 (7a) 

(~13 + 632)~12 = 0 (7b) 

r = 0 (7c) - Vl3Oll - v23o12 + a13~13 

i - ½r3o I = 0 (7d) - v23°12 3 

r + = 0 (7e) v13~12 + v23~22 632~32 
i 

v13~12 - ½r3~32 = 0 (7f)  

By e l im ina t ing  ~32' ~13 v ia (7d), (7f)  we then obtain a simple determinental condi- 

t ion leading to the fo l lowing trapping condi t ion fo r  th is  Type 2 prototype: 

a12 = 613 + 632 = 0 (8) 
Thus the sh i f ted  t r ans i t i on  frequency between the coupled states must be zero fo r  

trapping to occur. 

Solving fo r  the steady state so lu t ion s i m i l a r l y  to before we f ind  that :  

: |'VlaV2a| (g) 
[°21( q /-Vl3V2a/ 

+ L ] 
~13(~) = o31(~) = ~23(~) = ~32(~) = o33(~) = 0 

Thus coherent population trapping occurs at  long times fo r  almost a l l  i n i t i a l  condi- 

t ions ,  provided (8) holds. For the case where ~ i i ( 0 ) : I ,  o12(0)=~21(0)=~22(0)=0 the 
2 2 + v~3)" to ta l  trapped population is v23/(v13 

3. COHERENT TRAPPING IN LAMBDA~ LADDER SYSTEMS 

We now concentrate on a spec i f i c  trapping problem, the lambda ladder systems i n t e r -  

act ing with two lasers a, b, whose frequencies,  po lar iza t ions  and e l e c t r i c  f i e l d  
^ . ~^ 

operators are mc' ~c' ~c = l (~mc/2~oV)~c(ac-ac) (c=a, b) (see Table 1 and Fig. 2).  
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bl b ~ 1 
- -  W b 

Wa ~ m - -  - - 2  

0 

(a) (b) 

~ .  Atomic models considered: (a) ladder, (b) lambda systems showing near- 
resonant interact ion of three-state system iO>, i l> ,  12> with laser modes of 
frequencies ma' mb" Spontaneous decay from rl> to a fur ther state Im> is also shown. 

From (8) trapping should occur under conditions of two photon resonance: 

aa + ~b = 0 (I0) 

where ~a = 310 - ma' ~b = 321 - mb ( ladder),  6 b =-312 + mb (lambda) are the laser 
detunings, given in terms of Lamb shi f ted atomic t rans i t ion frequencies. Thus coher- 

ent trapping can be achieved here by simply a l ter ing laser frequencies. In many 

lambda cases mlO = ~12' so that trapping is v i r t u a l l y  unaffected by the Doppler 

e f fec t ,  hence v i r t u a l l y  a l l  atoms in a gas can exh ib i t  trapping effects simultaneously. 

Various other effects can also cause coherent trapping and related spectral fea- 

tures to not be f u l l y  exhibited. Anything that tends to p re fe ren t ia l l y  destroy coher- 

ence between the coupled states, such as e las t i c  co l l is ions would suf f ice.  Also, 

short experimental time scales (such as t rans i t  time effects in the lambda,ladder 

cases i f  the atoms and laser f ie lds  are confined to narrow intersect ing beams) can 

prevent coherent trapping features from becoming f u l l y  developed. However, in lambda, 

ladder systems, laser band widths are expected to have a major ef fect  [5 ] , [12 ] :  Two 

photon resonance is crucial for  the existence of trapping and f i n i t e  laser bandwidths 

imply non two photon resonant Fourier components capable of destroying the trapping. 

3.1 Derivation of Optical Bloch equations 

Laser f luctuat ions are treated using a del ta-correlated Wiener-Levy phase-diffu- 

sion model in which the laser spectrum is lorentzian. The treatment is l imi ted to 

small detunings from atomic resonance since i t  severely over-estimates the amount of 

radiat ion in the far  wings. Our lineshapes are those of near-resonant exci tat ion for  

which th is w i l l  not be a l im i ta t i on .  We describe the phase f luctuat ions by a gaus- 

sian Markov stochastic addition to the f i e l d  hamiltonian, 

H S : ,~a(t)a~a a + ,~b(t)a~a b ( I I )  
where ai(a~) is the usual annih i la t ion (creation) operator for  mode i and the phase 

ve loc i t ies  Ua = ~a (frequency f luctuat ions)  are zero-mean gaussian Markov processes, 

del ta-correlated according to <~m(t )~n( t ' )> :2Amna(t - t ' ) ,  (m,n = a,b). Amm is the 

bandwidth of f i e l d  m and Amn, (m # n) is the cross-correlated bandwidth, ignored in 
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most multiphoton theories. If the two lasers are statistically uncorrelated, then we 

may ignore Aab, but i f  particular care is taken to correlate laser j i t te r  [13], Aab 
will play a crucial role. Following Agarwal [14], we obtain equations of motion for 
stochastically-averaged density-matrix elements of the atom-laser modes plus spontan- 
eous emission modes system. This leads to an additional term of the form 

-abZ Aab(na - ma)(n b - m b) Pinanb{n~};Jmamb{m~ } in the L iouv i l le  equation for  the fu l l  

density matrix elements Pinanb{n~};Jmamb{m~ } ( i , j  = 0,1,2) .  

Master equations for  the reduced density matrix elements oi . for  the atom- 
nanb;amam b 

laser mode system are then obtained using the usual methods [8 ] ,  [9] based on the 

Markov, weak coupling, secular and e lec t r i c  dipole in teract ion approximations. We 
% % % 

r e s t r i c t  ourselves to the regime in which the di f ference between mlO and w12 or m21 
is large compared to the decay rates and Rabi frequencies so that laser a excites the 

10>~-~II>, b the [I>,-~12> t ransi t ions only. 

The atomic system is i n i t i a l l y  assumed to be in state IO> and the incident laser 

l i gh t  is described by coherent states I~c > (c = a,b) with ~c = ~ ½ exp(- i~/2) .  The 
C 

quanti ty ~-c/V, which determines the laser e lec t r i c  f i e l d  amplitudes 
: I I I 

Eoc 2(h~cnc/2~oV)~ is f i n i t e  as nc-~O along with the quantization volume V. In this 

s i tuat ion the var iat ion of Rabi frequencies ~c (Eq.(15)) with n c can be ignored. In 

the ladder case terms Olnanb;imam b and ~2n -In_;2m -Im.' associated with the popula- 
a b a D 

ting of ~0nanb;Omam b and ~ina_inb;ima_im b via spontaneous emission, can be approxi- 

mated (justifiable a posteriori) as ~ina_inb;ima_im b and O2na_inb_l;2ma_imb_ l 

respectively. A similar approximation is made in the lambda case. 

If the reduced density matrix elements are written as ~inanb;Jna+Pa;nb+Pb and the 

aforementioned simplifications made, i t  can easily be shown that the sets of equations 

involve coefficients which do not depend on n a and nb. They break up into coupled 

sets: in the ladder case, the sets of elements ~B in the (nanbPaP b) set involves 

~=0,na,nb;Ina-lnb;2na-l,nb-l, and B=0,na+Pa,nb+Pb;l,na+Pa-l,nb+Pb; 2,na+Pa-l,nb+Pb-l, 
corresponding to the coupling of sets of the three basis states of the form IO,na,nb~ 

ll,na-l,nb> and 12,na-l,nb-l>. In the lambda case, the (nanbPaPb) set involves 

~=0nanb; l,na-l,nb; 2,na-l,nb+l and B=0,na+Pa,nb+Pb;l,na+Pa-l,nb+Pb; 2,na+Pa-l,nb+Pb+l 
corresponding to the coupling of sets of the basis states of the form IO;na;nb >, 

ll,na-l,nb> and 12,na-l,nb+l>. 
These coupled density matrix elements can be written in the form 

oij(pap b) x C(nan b) (12) 
For example where the plus (minus) 

' ~0nanb;2na+Pa-l,nb+Pb±l=o02(paPb ) x C(nanb) 
refers to the lambda (ladder) case. The init ial conditions along with the choice of 

o00(paPb;t=O)=expi(Pa ~+ Pb 7 ) leads to 
oij(paPb;t=O)=O ( i , j  ~ 0,0) (13a) 
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C(nanb) : ]<naJma>J2x[<nbJmb>J 2 (13b) 
The elements ~ij(paPb) then satisfy the three-level Bloch equations 

i~00 = - [~(PaPb ) + iA(PaPb)]O00 + ½i~aO01 + ½i~aOl0 + iYl0Oll (14a) 

i~01 = - ½i{a~00 - [Q(PaPb ) + iA(Pa-l,P b) + a a + ½iYl]O01 ± ½i~b~02+½iCa~ll (14b) 

i~02 = ~ ½i~b°01 - [Q(PaPb ) + iA(Pa-l'Pb $I) + (aa +ab ) +½iY2]°02 +½i~a°12 (14c) 

i~ll = _ ½i~aO01 - ½i{a~10 - [~(paPb ) + iA(pap b)+iYl]oll±½i~b~12±½i~bo21+iY21o22 
(14d) 

i~12 = _ ½i~aO02 + ½i{bOll - [~(paPb ) + iA(Pa,Pb+l)+6 b+½i(Y 1 +y2)]o12±½i~bo22 
(14e) 

i~22 = iYl2~ll $ ½i~b~12 ~ ½i~bo21 - [~(PaPb ) + iA(PaP b) + iY2]a22 (14f) 
whe re 

~(paPb) ~ Pama + Pbmb (15a) 
+ ~ 2AabPaPb A(Pa,Pb ) z AaaPa AbbP~ + (15b) 

~a : <li~'~aJ0> Eoa/~ (15c) 
~b = <2J~'~b[l> Eob/~ (ISd) 

The upper, lowers signs apply in the ladder, lambda cases respect ively.  The total  

spontaneous emission decay rates are Yi i = 2,1, with Y2 = 0 in the lambda case. 

Einstein A coef f ic ients  f o r i ÷ j  t ransi t ions are denoted Yi j "  YI2 and Y21 are zero in 

the ladder, lambda cases respect ively.  Laser bandwidths appear in (14) via A(paPb). 

3.2 Interpretat ion of laser bandwidth factors 

Ignoring the atomic system, the density matrix elements for  the laser modes system 

in our Wiener Levy model are given by: 

Pnanb;na+Pa;na+P b = exp{[ia(paPb) - A(paPb)]t}<nalaa><nbl~b><aaJna+Pa><~bJnb+Pb > (16) 

For these to remain f i n i t e  (and hence also the various mult i t ime quantum correlat ion 

functions for  the e lec t r i c  f i e l d  operators) we see that A(paPb) must never be 

negative. 

This leads to res t r ic t ions  on the bandwidth factors 

Aaa ~ 0 (17a) 

Abb ~ 0 ( l l b )  
A 2 (17c) ab ~ AaaAbb 

A calculation of the long time spectrum [8],[15] enables Aaa, Abb to be inter- 
preted as laser bandwidths. The cross spectral bandwidth Aab is absent from the long 
time spectrum, but appears in the expression for the two time quantum correlation 
function <Ea~(t l )E~(t2)> [5] .  The res t r i c t i on  Aab ~ ½(Aaa+Abb ), which follows from 

(17) ensures the f in i teness of this corre lat ion function. 

For two dependent laser f ie lds  we would expect Aab=0. However for two f ie lds 

derived from the same source, Ca : @b' and hence Aaa : Abb : Aab = A. This s i tuat ion 

is referred to as (posi t ive) c r i t i ca l  cross corre lat ion,  (17c) jus t  being sa t is f ied ,  

and has been obtained experimentally [13]. A fur ther  in terest ing possibi l i ty , though 

less easi ly  real ized experimental ly,could involve deriving two f ie lds  from the same 
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source, then reversing the phase f luc tuat ions  of one f i e l d  via re f lec t ion  from a 

phase conjugate mirror.  For th is  case @a = - @b and hence Aaa = Abb = -Aab : A so 

would be refered to as (negative) c r i t i c a l  cross cor re la t ion.  

3.3 Calculations of atomic state populations 

The atomic populations are given by: 

Pi = ° i i  (0'0) (18) 
The Bloch equations (14) have been.solved numerical ly [5 ] , [11 ]  in terms of the eigen 

values, r i gh t  and l e f t  eigenvectors for  the non symmetric 9 x 9 matrix of coe f f i c ien ts  

associated with the r i gh t  hand side of (14)( augmented by the conjugates of (14b), 

(14c), (14e)). Analyt ic  expressions for  certain steady state populations have been 

obtained for  zero bandwidths [15].  

The resul ts  are shown in Figs.(3) and (4). Ladder and lambda cases have been 

treated along with s i tuat ions where laser f luc tua t ions  are e i ther  zero, non zero but 

uncorrelated and non zero but (pos i t i ve ly )  c r i t i c a l l y  cross correlated. In F igs. (3) ,  

(4) spontaneous decay is ignored except from II> to a level  Im> outside the I0>, I I>,  

12> system, corresponding to a possible net t  loss of population. 

For the zero laser f l uc tua t ion  case Figs.3(a) ,  4(a),  3(d),  4(d) show that coherent 

population trapping only occurs when the two photon resonance condit ion ( I0)  is 

sa t i s f ied .  For the non zero but uncorrelated case Figs.3(b) and 4(b) show that  uncor- 

related f luc tuat ions in the two laser f i e lds  causes the e l iminat ion of coherent popu- 

la t ion  trapping in both lambda and ladder cases. 

However, Figs.3(c) and 4(c) show that  i f  the laser f luc tua t ions  are pos i t i ve l y  

c r i t i c a l l y  cross correlated then coherent population trapping is f u l l y  restored in 

the lambda case but fu r ther  destroyed in the ladder case. Since Figs.3(c) and 4(c) 

also apply to ladder and lcunb~ systems respect ive ly  for  the case Aaa = Abb = -Aab = 0. I  

we see also that for  negative c r i t i c a l  cross cor re la t ion trapping would be restored 

the ladder case and destroyed in the Ic~nbc~ case. 

These features can be interpreted in terms of a simple semiclassical two-photon 

descr ipt ion useful when II> is far  from resonance (aa large) and with states IO> and 

12> close to two-photon resonance. Under these circumstances, the system is describ- 

ed as an e f fec t ive  two-level system driven by a two-photon Rabi frequency (~a~b/~a). 

The two-photon coherence P02 is driven by the two-photon inversion (P22-PO0) mu l t i -  

plied by field quantities Ea(-)(t)E~+)(t)=EoaEobexp{i(~a-~b)t+i(~a(t)±~b(t~}where 
the phases @a(t) and @b(t) are stochastic variables (the upper, lower sign refers to 

the ladder, lambda cases respectively). When stochastic averages are taken, the impor- 

tant quantity is <<exp(i@a(t)±i@b(t))>>. If  ¢a(t)=@b(t) as in the usual positive 

cr i t ical ly cross correlated situation, then the two photon (or Raman) coherence is 

entirely unaffected by laser phase fluctuations in the Ic~b~ case. On the other hand 

i f  @a(t)=-@b(t) as in the negatively cr i t ical ly cross correlated case, then phase 

fluctuations have no effect in the ladder case. 
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Figure 3. T ime-evolut ion of  populat ion in  the d iscre te  states J0>, ] I> and [2> of  the 
lambda system dr iven by laser  f i e l d s  w i th  Rabi frequencies ~a = ~b = I ,  decay rates 
YI0 = YI2 : Y21 = 0, Ylm = 2. In (a) ,  bandwidths Aaa = abb = Aab = 0 and detunings 

a a = 5, a b = -5;  in  (b) Aaa = Abb = 0 . I ,  Aab = 0, ~a = 5 = -ab; (c) Aaa : Abb = Aab 

: 0 . I ,  6 a : 5 : -ab; (d) Aab = Aaa : Abb = 0, ~a : 5.1,  ab = -5. 

. 

0 t00 200 0 100 200 

T T 

1 ~  (b) 

0 200 
T 

0 100 200 
T 

~ 4 .  Time evo lu t ion  of  populat ions fo r  ladder system. Parameters as in  Fig. 3. 

3.4 Calcu lat ions of  f luorescence spectra 

The to ta l  i n t e n s i t y  of  f l uo rescent  l i g h t  emitted from 11> is determined by the 

populat ion P l ( t ) .  

Results of ca lcu la t ions  on long time f luorescence spectra as a func t ion  of  detun- 

ing 6 b are shown fo r  the lambda case in  F igs . (5)  and (6) ,  where the detunings aa are 
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Figure 5. Absorption p robab i l i t y  P1(t) Fi.gure 6. As in f igure 5, but wi th 
as a funct ion of detuning a h fo r  a" detuning a a : I .  
lambda system with Rabi frequencies 
~a : ~b : 0.4, time t = 200, detuning aa : 0 fo r  (a) bandwidths Aaa : Abb : Aab : O; 

(b) bandwidths Aaa : Abb = 0 . I ,  Aab = O; (c) c r i t i c a l l y  cross-correlated f i e lds  

Aaa = Abb = Aab = 0 . I ,  with YIO : YI2 = I .  

zero, non zero respect ively.  The only spontaneous emission processes included are 

II>÷[0>, 11>+12> so no nett  loss of population is possible. The Rabi frequencies are 

chosen to be small compared to the decay widths. 

Figs.5(a),  6(a) show that a narrow deep minimum occurs (coherence hole) in the 

fluorescence curve when the condit ion for  two photon resonance is sa t i s f i ed ,  corres- 

ponding to the formation of coherently trapped population in [0>, 12> and where the 

population of II> becomes zero. 

Figs.5(b) ,  6(b) show that the narrow minimum is washed out in the case of non zero 

but uncorrelated laser f luc tua t ions ,  corresponding to the destruct ion of coherent 

population trapping: Figs.5(c) ,  6(c) show the restorat ion of the narrow spectral 

feature for  the case of (pos i t ive)  c r i t i c a l l y  cross correlated f luc tua t ions .  

4. EXPERIMENTS ON COHERENT TRAPPING IN LAMBDA SYSTEMS 

Two fluorescence spectrum experiments on sodium by Gray et a l . [15 ]  and by Ezekiel 

et a i . [ 13 ] [16 ] [17 ]  are shown in schematic ou t l ine  in F igs. (7) ,  (8). A more complete 

survey of experiments is given in [5 ] .  

The experiment of Gray et a l . ( F i g . ( 7 ) )  is done using two lasers with non zero but 

uncorrelated f luc tuat ions  (Aaa,Abb are ~ IMhz). Though small compared to the decay 
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~ .  Fluorescence spectrum in sodium lambda system. I0>÷32Si (F:I) ,  12>+32SI (F=2), 
il>+3 PI(F=2). Uncorrelated laser f ields a,b used (A , # Abb ~ ~IMhz A - 
Schematic o u t l i n e  from Gray e t  a l . [ 1 5 ] ,  a~ ' ab - 0) .  

ra tes the Rabi f requencies are s u f f i c i e n t l y  la rge  tha t  the t h e o r e t i c a l  width o f  the 

coherence hole (~ (~+~) /2 (Y l  0+~12 )) is large (~ 9 Mhz) compared to the laser band- 

widths. The experimental results agree fa i r l y  well with theoretical predictions [15] 

ignoring laser fluctuations. 

A much narrower coherence hole is seen in the experiments of Ezekiel et al. with 

less intense f ields. The two laser fields satisfy (positive) cr i t ica l  cross correla- 

tion conditions, being derived from the same source using accousto-optic modula- 

tion. For a single atom-laser beams interaction region, the coherence hole width is 

reduced [16] to ~ 200 khz, corresponding to the interaction time l im i t  associated 

with the atomic beam crossing the laser f ie lds,  even though the original source has 

a normal bandwidth. An even narrow spectral feature (~ 1.3 khz)(shown in Fig.(8)) 

can be obtained using the Ramsey method [13] involving two atom-laser beams inter- 

action regions. 
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Eiqure 8. Ramsey fr inges in fluorescence spectrum in sodium lambda system. States as 
in Fig. 7. Laser f ie lds  a,b obtained from same source using accousto-optic modulator. 
C r i t i c a l l y  cross correlated f ie lds  (Aaa # Abb ~ Aab)" Schematic out l ine from Ezekiel 
et al.[13]. 
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I .  Introduction 

The goal of harnessing fusion energy for power production has led to 

increasingly complex means of generating plasmas whose conditions approach those 

required for nuclear fusion. In the las t  decade the concept of compression and 

heating of iner t ia l l y -con f ined plasmas by powerful laser beams has been persued 

vigorously and with considerable success as an a l ternat ive to magnetic-confinement 

fusion. The basic concept of inert ial-conf inement fusion (ICF), is straightforward. 

A spherical pe l le t  containing a Deuterium Tri t ium fuel mixture is i r radiated over i t s  

surface by powerful beams from a laser. The pe l le t  surface becomes transformed by 

absorption of energy into a high temperature plasma which expands rapid ly  into the 

surrounding vacuum. A react ive force to th is expansion arises which acts to compress 

the remaining fuel to achieve the densit ies above one thousand times the i n i t i a l  

l i qu id  fuel density and simultaneously, as the compression stagnates, to raise the 

core temperature to 108 OK. These are the conditions required to ign i te  and sustain 

a thermonuclear burn which proceeds for the short time (= lOOpsec) during which the 

pe l le t  is constrained at high density by i t s  own iner t ia .  

The idea and method of compressing the fuel to produce the conditions for  

fusion, f i r s t  introduced by Nuckolls | i ] ,  led to an upsurge of research in the f i e l d  

since i t  allowed small pe l le ts  (= Imm diameter) to be used whose energy y ie ld  and 

dr iver  laser requirements f e l l  within the range of conceivable technology. Already 

lasers capable of del iver ing powers and energies of 1OOTW and lOOkJ respect ively are 

being constructed for  use in the 1980's and these should allow the sc ien t i f i c  

f e a s i b i l i t y  of laser-dr iven ICF to be demonstrated through fuel ign i t ion and possibly 
s ign i f i can t  thermo-nuclear burn. 

In th is ta lk  I w i l l  review some of the physical phenomena which are encountered 

in laser fusion experiments. In the avai lable time i t  w i l l  be possible to provide 

only a b r ie f  out l ine and for  fur ther information the reader is referred to reviews 
by Hughes f2] and Max and Ahlstrom f3,41. 
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In t reat ing the complex physical problems involved in the i r r a d i a t i o n ,  

compression and i gn i t i on  of a laser fusion target ,  i t  is convenient to s p l i t  the 

pe l le t  in to two regions; the outer underdense plasma where the density is less than 

the c r i t i c a l  density for  the incoming laser rad ia t ion ,  and the inner overdense core. 

(The c r i t i c a l  densi ty,  ncr, corresponds to the density for  which the laser frequency 

equals the local plasma frequency, and represents the c lassical  re f l ec t i on  point  in 

the plasma. As n ÷ ncr, the real part of the plasma re f rac t i ve  index ~ ÷ o, and, 

hence, the wave can only propagate for  n < ncr).  I t  is in the underdense region 

that the incoming laser l i g h t  is absorbed and d i rec t  plasma heating occurs. The 

processes of ablat ion and compression are then driven by conduction of the absorbed 

energy into the high density core. For most of th is  ta lk  I w i l l  concentrate on the 

physics of the underdense region r e s t r i c t i n g  my comments on processes in the 

overdense plasma to a very b r ie f  descr ipt ion at the end. 

2. Character ist ics of the Underdense Region 

We are interested in the plasma temperature, ve loc i t y  and density scale 

length in the underdense plasma. F i r s t l y ,  by equating the rate of absorption of 

laser energy near the c r i t i c a l  surface with the rate of heat conduction from that 

region, a rough idea of the plasma temperature can be made. The appropriate 

expression is :  

re(keY) ~ 2.7 x 10 -10 {Xk(~m)}2 Iabs 

where Iabs is  the absorbed l a s e r  f lux  d e n s i t y ,  T e i s  the temperature ,  X k the l a s e r  

wavelength, and the f ac to r  f ,  i s  the "f lux l i m i t "  introduced to i nd i ca t e  tha t  in 

p r a c t i c e  the heat  flow is  reduced below c l a s s i c a l  values .  Using f=O.03, values in 

agreement with those necessary to expla in  experimental  da ta ,  temperatures  are  in the 

keY region for  absorbed i n t e n s i t i e s  around 1014 W/cm 2 and v i s i b l e  wavelengths.  

Secondly, the expansion v e l o c i t y  is  approximately  equal to the loca l  sound 

speed a t  the c r i t i c a l  dens i ty  given by the express ion :  

which has values around 107 - 108 cm/sec. 

Th i rd ly ,  the dens i ty  sca le  length of the plasma can be es t imated for  shor t  

l a s e r  pulses as approximately equal to the product of  the l a s e r  pulse dura t ion  

and the sound speed (a few microns for  picosecond l a s e r  pu l se s ) .  For long l a s e r  

pu l ses ,  however, t h i s  i s  no longer app rop r i a t e  and the sca le  lengths  are l im i t e d  

by the l a s e r  and t a r g e t  geometry and the divergence of  the plasma flow. In t ha t  

case the sca le  lengths  are approximately equal to the l a s e r  beam diameter  for  

p lanar  geometry or  the radius  of  the p e l l e t  in sphe r i ca l  geometry (lO0~m-lmm for  

t yp i ca l  l a s e r  fusion t a r g e t s ) .  Since,  as wi l l  be seen l a t e r ,  the dens i ty  s ca l e  
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length is a crucial factor in determining the exact interact ion processes that w i l l  

occur, i t  is worth noting that the trend in fusion experiments is away from the 

short scale lengths enCountered in the so-called exploding pusher regime where short 

picosecond laser pulses were used, towards the long scale length plasmas obtained 

using large targets and nanosecond duration pulses. 

I t  is most important to understand the mechanisms of absorption of the laser 

l i gh t  by the plasma. E f f i c ien t  absorption is crucial since the overal l  e f f ic iency 

of a power plant is d i rec t l y  proportional to the f ract ion of the laser l i gh t  

absorbed by the target.  In th is context, mechanisms that can decouple the incident 

l i gh t  by re f lect ion and scattering must also be investigated. 

There are thought to be three pr incipal  absorption mechanisms in laser fusion 

plasmas, those being inverse Bremsstrahlung, resonanance absorption and absorption 

due to ion-acoustic turbulence. 

Inverse Bremsstrahlung occurs due to co l l is ions between electrons and ions 

during which the osc i l l a t i on  energy of the electrons in the electromagnetic wave is 

converted into random (thermal) motion, causing the wave to be damped. The 

coef f ic ient  of absorption, for  weak f ie lds  and a Maxwellian electron ve loc i ty  

d is t r ibu t ion  can be shown to be given by: 

K'= (27)½ 1 1 6 ~ ]  Zn2e61nA (3) 

L T ]  C(meTe )~2 ~ (Z-n/ncr)½ 

where InA is the coulomb logarithim, c is the velocity of light, mL is the laser 
frequency, m e the electron mass, z the ionic charge, and n the electron density. 

Equation 3 shows that the absorption increases with plasma density, average ionic 
charge, z, and decreases with increasing plasma temperature. In general, long scale 
length plasmas enhance the absorption by this mechanism. 

As the incident field strength increases the oscillation energy of the 

electrons, Vos, exceeds the electron thermal energy, Vth, 
= [eEL/me~L]/(kTe/me )½ > 1) and the ef fect ive electron-ion co l l i s ion  (Vos/Vth 

frequency decreases. This causes the ef f ic iency of inverse Bremsstrahlung 

absorption to decrease at high laser irradiances. A fur ther  non-l inear reduction 

in the ef f ic iency of inverse Bremsstrahlung absorption has been discussed by 

Langdon [5] and arises due to the formation of a non-Maxwellian electron d is t r ibu t ion  

at high laser in tens i t ies  due to the electron-electron thermalisation rate becoming 

smaller than the absorption rate. 

The second absorption mechanism, resonance absorption, Occurs when an electro-  

magnetic wave is obl iquely incident at p-polar isat ion on a plasma density gradient 

with density scale length L. The s i tuat ion is i l l us t ra ted  in f igure 1. The 

incoming beam is refracted as i t  passes through the plasma and can only penetrate 

to i t s  turning point density, nt= ncrCOS2(O), where 0 is the angle of i]ncildence of 

the beam. At the point of re f lec t ion there exists a component of the e lec t r i c  f i e ld  
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Fig. 1 Schematic showing the configuration in which 
a p-polarised electromagnetic wave incident 
upon a density gradCent undergoes resonance 
absorption. 

of the laser beam down the pl'asma density gradient. This e lec t r i c  f i e l d  can tunnel 

t6~the c r i t i c a l  surface an excite resonant longitudinal plasma osc i l l a t ions  (Langmuir 

waves) at that point. Damping of these resonant waves can resu l t  in absorption of 

energy from the laser beam. In the case of normal incidence or s-polar isat ion there 

is no longitudinal component of the E-M wave and hence no resonance absorption ( in 

an unmagnetised plasma). The level of resonance absorption is sensi t ive to the angle 

of the incoming laser radiat ion and an optimum angle for resonance absorption exists.  

For angles less than th is  optimum the f i e l d  component that drives the Langmuir waves 

is reduced whi ls t  for angles greater than the optimum the turning point density moves 

fur ther away from the c r i t i c a l  density and the coupling between the dr iv ing f i e l d  and 

the resonance region becomes weaker. The absorption can be characterised by the 

resonance function [6 ] ,  @(m), where ~ = (LmL/c) SinO, which has a maxllmum for 

T = 0.8 ( for  r e l a t i ve l y  weak plasma density gradients such that koL>l). The level 

of absorption may be as high as 50% in short scale length plasmas where the radiat ion 

is non-normally incident,  and is independent on the strength of the damping of the 

Langmuir wave. 

An important feature of resonance absorption is that i t  produces high energy 

electrons with an approximately Maxwellian d is t r ibu t ion  but with a temperature much 

higher than the thermal plasma temperature. Fnedberg [7] has given an approximate 

re la t ion for th is  temperature as: 

T h = (memLlabsL/ncr)½ (4) 

which for  typical  laser parameters of lab s = 1015 W/cm 2, L=X L, gives Th= 20keV. 
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The number of these hot electrons n h, produced can be estimated using similar 

arguments to those for eqn. 1 but in this case the f lux l imi ter ,  f ,  is that 

appropriate to the hot electrons which may be very much larger than that for the 

thermal distr ibut ion. We obtain: 

0.4 - ~ r  Vos c (5) 
nhlncr : T labs L V--~-J 

where Vos is the osci l lat ion velocity of the electrons in the f~eld of the E-M wave. 

The condition nh/ncr = 1 is part icular ly easy to satisfy for long wavelength lasers 

since at constant irradiance the electron osci l lat ion energy is proportional to wave- 

length squared, and hence we can expect the low density region ofplasmas generated by 

long wavelength lasers to be dominated by superthermal electrons. There are two 

deleterious properties of superthermal electrons in the fusion context. F i rs t ly ,  

their  production leads to high velocity, low mass plasma expansion which reduces the 

momentum available for compression, and secondly, hot electrons can penetrate and 

pre-heat and target core making subsequent compression more d i f f i c u l t .  

The third mechanism arises in the presence of ion-acoustic turbulence which can 

be shown to effect a number of absorption and scattering mechanisms in the plasmas. 

As an example, consider inverse Bremsstrahlung absorption. The absorption coefficient 

of eqn. 3 was calculated on the assumption that there existed a random distr ibution 

of background ions with which a Maxwellian electron distr ibution interacts. In the 

presence of ion turbulence an element of coherence is introduced into the ion 

distr ibut ion which can lead to increased damping of the laser l ight .  In the presence 

of such coherent ion turbulence the energy damping rate (~E)EFF becomes [8]: 

~L I6ni(k)] 2 2 

where EL is the direct ion of the laser e lec t r i c  f i e l d ,  k is the k-vector of the ion 

waves, where 6ni(k)/n i is the ion f luctuat ion spectrum. Values of (VE)EFF are greater 

than those for an uncorrelated ion background. 

Although ion-acoustic turbulence can increase inverse Bremsstrahlung absorption, 

recent theoretical work from our group has shown that the level of resonance 

absorption is reduced by the presence of such turbulence isolated in the v ic in i ty  of 

the c r i t i ca l  density surface [9]. In that case there arises an anomalous re f lec t i v i t y  

for the plasma given by the expression: 

Ran = ( I  - R)Q/(I + Q) (7) 

where R is the normal plasma r e f l e c t i v i t y ,  and Q is given by the expression: 

An ~ 2 

where An is the f luctuat ion amplitude, with A the width of the region containing the 

f luctuat ions,  and Az is the peak width of the resonant e lec t r i c  f i e l d ,  and 0 o is the 
angle of incidence of the incoming p-polarised beam and ~D is the Debye length. The 
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anomalous r e f l e c t i v i t y  can be qui te large (= 50%), subs tan t ia l l y  reducing the 

e f f i c iency  of resonance absorption. 

I t  should be clear from these two points that  evaluat ing the e f fec t  of ion 

turbulence on the overal l  plasma absorption is a complex matter and can only be made 

through a se l f -cons is tent  treatment of a l l  possible mechanisms inc luding the inf luence 

of the hydrodynamic motion. 

Obviously, for  e i ther  of these mechanisms to operate there must be some we l l -  

established reasons to expect the plasmas to be turbu lent .  Recently experimental 

evidence has been presented that demonstrates the presence of such modulations [ i 0 ] .  

Theore t ica l ly ,  the o r ig in  for  the f luc tua t ions  and the i r  amplitude is less well  

defined although several mechanisms have been proposed inc lud ing heat-f low driven 

ion acoustic i n s t a b i l i t i e s  [ I I ]  or ion- ion streaming [12] .  Further discussion of 

th is  point  can be found in the references. 

To summarise the resul ts  on absorption, we note that  resonance absorption 

produces hot electrons which are undesirable in the fusion context. I t  is excited 

e f f i c i e n t l y  in short scale length plasmas where the range of possible angles over 

which the mechanism can operate becomes large, and when the inc ident  rad ia t ion st r ikes 

the plasma density gradient at non-normal incidence due e i ther  to the focussing 

behaviour of the laser beam or the target geometry. Inverse Bremsstrahlung 

absorption, on the other hand, occurs in long scale length plasmas pa r t i cu l a r l y  at 

low to moderate i n tens i t i es .  I t  can also be shown that  inverse Bremsstrahlung becomes 

more e f f i c i e n t  as the laser wavelength decreases wh i l s t  resonance absorption becomes 

more prevalent for  long wavelengths. Both mechanisms can be effected by the presence 

of ion-acoust ic turbulence, although evaluating i t s  e f fec t  on the overal l  absorption 

is a complex matter. 

3. The Ponderomotive Force in Laser-Plasma Interact ions 

So far  we have assumed that the hydro-dynamic motion of the plasma is un- 

effected by the absorption and propagation of the incoming (and ref lected)  e lec t ro-  

magnetic waves. This approximation is in fact  a poor one in many s i tuat ions since, 

for  example, at high laser i n tens i t i es  the rad ia t ion pressure of the incoming laser 

beam can be large in comparison with the plasma pressure and, hence, we can expect 

the plasma f low to be modified by that  pressure. A basic condit ion for  the plasma 

dynamics to be modified by the radiat ion pressure is that  the ra t io  Vos/Vth>l, which 

is easy to achieve for  long wavelength lasers at moderate to high i n tens i t i es .  

The ef fect  on the plasma dynamics is usual ly  evaluated in terms of the 

ponderomotive force in the plasma and has been extensively  treated in the l i t e r a t u r e  

[13] .  Following a simple analysis as given by Chen [14 ] ,  the force on an electron 

in an E-M wave can be wr i t ten  as: 

2 
f :  -e I r 1 

me~L~ ~ ~E-? E + E x ? x Ej (9) 
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Here, the ExV x E term gives r ise to the d r i f t  of the electrons in the directi,on of 

the wave, whi ls t  the E~VE term resul ts  in acceleration down the e lec t r i c  f i e ld  

gradient. The ponderomotive force, FnL, is the force per uni t  volume, and can be 

wr i t ten:  
2 

FnL = _ mp ? <E2> mL 2 87 (_111 

af ter  averaging over one optical cycle, with m~ = 4~ne2/me . 

The importance of the ponderomotive force in laser-plasma interact ions w i l l  be 

i l l u s t ra ted  by three examples, f i r s t l y ,  density p ro f i l e  modif icat ion, secondly 

f i lamentat ion or self- focussing and t h i r d l y  the exci tat ion of parametric i n s t a b i l i t i e s .  

When a laser beam is  incident upon a plasma pro f i le  modif ication occurs 

because the spatial d is t r ibu t ion  of the plasma d ie lec t r i c  constant gives r ise to 

e lec t r i c  f i e l d  gradients of the incident wave in the direct ion of the density gradient. 

With reference to f igure 2a, these e lec t r i c  f i e ld  gradients act to modify the plasma 

flow, pa r t i cu la r l y  in the v i c i n i t y  of the c r i t i c a l  density surface where q + o, and 

th is changes the density p ro f i le  as shown in f igure 2b. The change in the density 

p ro f i le  in turn effects the e lec t r i c  f i e ld  d is t r ibu t ion  and thus the ponderomotive 

force. To predict the plasma density p ro f i le  in steady conditions th is  coupling must 

be taken into account. 

electric field 

°0i / 
o 4 8 

\ steepened 
profile 

axial distance ~'o 

region steepened 
by resonance fields 

o Z 

Fig. 2 

2(a) Electromagnetic f i e ld  d is t r ibu t ion  and 
induced ponderomotive forces on a l inear  density 
ramp, 2(b) the resul t ing modified density p ro f i l e  
for  a normally incident radiat ion,  and 2(c) the 
resul t ing density p ro f i l e  for  non-normal incidence 
in the presence of resonance absorption. 

Direct evidence of such p ro f i l e  modif ication has been obtained from experiments 
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where interferometry has been used to measure the plasma density d i s t r i b u t i o n  in the 

v i c i n i t y  of the c r i t i c a l  density surface [15] .  An important consequence of density 

p ro f i l e  modif icat ion is that the density gradients become very steep near the c r i t i c a l  

surface, t y p i c a l l y  of the order of  the wavelength of the laser l i g h t ,  and hence the 

volume of plasma with i t s  density close to c r i t i c a l  is very small. Recall ing the 

resul ts  above, th is  means that inverse Bremsstrahlung absorption becomes i n s i g n i f i c a n t ,  

wh i l s t  the range of angles over which resonance absorption is possible becomes large. 

Several theories have been developed to explain the experimental observations 

of p ro f i l e  modif icat ion invo lv ing ,  in general, a steady balance of the ponderomotive 

and thermo-kinet ic forces at the c r i t i c a l  surface. The problem is complicated in the 

presence of resonance absorption since the local f i e lds  associated with the e lec t ro-  

s ta t i c  wave also give r ise to ponderomotive forces. The resu l tant  density p ro f i l e  

in th i s  s i tua t ion  is shown in f igure 2c and d i f f e r s  from the case of normal incidence 

( f i g .  2b), by the presence of an addi t ional  steepened region due to the resonance 

f i e l ds .  Even at nominally normal incidence resonance absorption can be important in 

determining the steepened density p ro f i l e  i f  the c r i t i c a l  surface is r ippled due to 

the presence of ion acoustic turbulence. Combining a l l  these factors has enabled us 

to recent ly develop a model of p ro f i l e  modi f icat ion which is consistent wi th 

experimental data obtained at our laboratory |16] .  

The ponderomotive force can also give r ise to sel f - focussing or f i lamentat ion 

of the laser beam as i t  propagates up the plasma density gradient. Consider a 

gaussian beam propagating through an i n i t i a l l y  uniform plasma. The radia l  var ia t ion  

in the beam in tens i t y  resul ts  in a radia l  component of the ponderomotive force which 

expels plasma from the beam centre. As the plasma density there drops, the re f rac t i ve  

index increases ( recal l  n = (1-n/ncr)  2), and th is  resul ts  in the formation of a 

pos i t ive  lens - l i ke  re f rac t i ve  index p ro f i l e  and focussing of the incoming beam. This 

mechanism can, s i m i l a r l y ,  resu l t  in i n i t i a l  spat ia l  i n tens i t y  modulations on a laser 

beam becoming enhanced in a plasma. I f ,  in th is  manner, the laser i n tens i t y  in the 

plasma becomes very non-uniform th is  could have serious consequences in the fusion 

context by modifying the absorption process, increasing hot electron generation and 

giv ing r ise to local small scale magnetic f i e l ds .  The s t a b i l i t y  of such self-focussed 

f i laments is open to some question since the in terac t ion  becomes h igh ly  non- l inear  

in the v i c i n i t y  of  the focus. The process w i l l  however, become of increasing 

importance in long scale length plasmas i r rad ia ted at high i n tens i t i es .  

A th i rd  area where the ponderomotive force has a marked e f fec t  is through the 

exc i ta t ion  of parametric i n s t a b i l i t i e s .  For an in t roduct ion to th is  topic  the reader 

is referred to Chen {14].  The i n s t a b i l i t i e s  can be grouped as e i ther  of the e lec t ro-  

s ta t i c  or backscatter type, the former inc lud ing the two plasmon decay and the 

parametric decay wh i l s t  the l a t t e r  includes stimulated B r i l l o u i n  and Raman scat ter ing.  

Such processes resu l t  in the decay of the inc ident  wave in to  e lec t ros ta t i c  (e),  ion 

acoustic ( i )  or addi t ional  electromagnetic ( t )  waves as indicated in the fo l lowing 
re la t ions:  
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Two Plasmon Decay t ÷ e + e 

Parametric Decay t ÷ e + i (.12) 

Raman Scattering (SRS) t + t + e 

B r i l l o u i n  Scattering (SBS) t ÷ t + i 

To i l l u s t r a t e  the role of the ponderomotive force we shal l  consider the example 

of stimulated B r i l l o u i n  backscatter. In th i s  case the laser (pump) wave, Et, enters 

the plasma where i t  in teracts  with plasma density f l uc tua t ions  (noise) to produce a 

weak ref lected wave, ERt. The e lec t r i c  f i e lds  of the two waves in teract  g iv ing r ise 

to a component of the ponderomotive force proport ional to E t x ERt, which has the 

correct phase to increase the i n i t i a l  plasma density f l uc tua t ions ,  which, in turn,  

increases the amplitude of the ref lected l i g h t .  This feedback process resul ts  in 

exponential growth of both the perturbat ion and the ref lected l i g h t  provided the 

appropriate energy and momentum conservation condit ions are sa t i s f ied .  

Obviously the f l uc tua t ion  level cannot grow i n d e f i n i t e l y ,  and the study of the 

saturat ion behaviour of SBS has been the subject of much theoret ical  work. Experiments 

have, however, shown large levels of SBS in plasmas with long density scale lengths 

(where ample distance ex is ts  for  the backscattered wave to grow). One possible way 

of s t a b i l i s i n g  SBS is through competition between SBS and inverse Bremsstrahlung 

absorption, since in that case the distance over which growth of the backscatter can 

occur is l im i ted not by the plasma scale length but by the inverse Bremsstrahlung 

absorption length. This would again suggest that short wavelength lasers should be 

used as fusion dr ivers to avoid the problems of SBS. 

A fu r ther  damaging e f fec t  of some parametric i n s t a b i l i t i e s  can arise due to 

the fact  that  they exci te plasma waves which, in a manner s im i la r  to that of  resonance 

absorption, can cause laser energy to be absorbed in to  high energy superthermal 

electrons. As an example, we consider the Raman i n s t a b i l i t y  which occurs for  plasma 

densi t ies less than the quarter c r i t i c a l  and produces a backscattered wave with a 

frequency close to the sub-harmonic of the laser l i g h t .  

We have recent ly performed measurements of SRS in plasmas i r rad ia ted by short 

20psec duration pulses from a Neodymium laser and recorded both the Raman spectra and 

X-ray emission from the plasmas over a very wide range of laser i n tens i t i es .  I t  was 

found that  above the Raman threshold an energetic t a i l  could be i den t i f i ed  in the 

X-ray emission spectra equivalent to the presence of e l ec t ronsw i th  a temperature in 

excess of 80keV. Such temperatures are greater than those normally obtained via 

resonance absorption and are, therefore, po ten t i a l l y  of greater importance in causing 

core pre-heat in the fusion context. As for  SBS, SRS is expected to be important in 

long scale length plasmas at moderate laser i n tens i t i es  and recent experiments from 

the Livermore Laboratories in the USA have measured Raman backscatter of aroundlQ% 

in such plasmas emphasing that the potent ia l  damaging ef fects of SRS |17] .  
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4. Problems in the Overdense Region 

We have concentrated above on some of the physical processes which are being 

studied to understand the in teract ion of intense laser l i g h t  in the underdense region 

of a laser fusion target.  As is evident the subject contains a r ich  var ie ty  of complex 

in teract ing physical phenomena. The topics treated above form only the very b r ie fes t  

summary of the physics involved and of necessity some major areas have been overlooked. 

In the overdense region, the laser rad ia t ion is no longer present, and the 

physical problems involve the mechanisms of heat t ransport  from the absorption region 

to the ablat ion f ron t ,  the e f fec t  of fast  electron pre-heat of the pe l l e t  core, the 

e f fec t  of f l u i d  i n s t a b i l i t i e s  (Rayleigh-Taylor growth) on the symmetry of the 

implosion, and the implosion e f f i c iency  and densi t ies and temperatures that  are 

achieved. 

As already indicated above, there are advantages of using short wavelength 

lasers in s impl i fy ing  the physics of the underdense plasma, and, broadly speaking, 

th is  also applies to the overdense region through an increase in the ablat ion pressure 

and mass ablat ion rate,  a reduction in t ransport  i n h i b i t i o n  ( reca l l  the fac tor ,  f ,  

in equation 1), and an overal l  increase in the hydrodynamic e f f i c iency .  The only 

area where short wavelengths appear to be at a disadvantage is that  concerning the 

implosion symmetry. Here i t  is usual to assume that the laser un i formi ty  on the 

target surface need not be better than about 10% since la tera l  heat f low reduces 

th is  non-uni formity to a to lerable level at the ablat ion surface. As the wavelength 

is reduced, however, th is  thermal smoothing is also reduced and, hence, to obtain 

good implosion symmetry implies a smaller i n tens i t y  var ia t ion  is needed at the pe l l e t  

surface. Although th is  might be d i f f i c u l t  to achieve in a reactor geometry, where 

the need to shie ld the reaction region by a neutron absorbing blanket reduces access 

to the pe l l e t ,  in small scale experiments i t  has recent ly  been demonstrated with 

the OMEGA laser at the Univers i ty  of Rochester that un i formi t ies  of a few percent 

can be achieved using mul t ip le  overlapping laser beams. 

Another method of overcoming the problem of rad ia t ion un i formi ty  has recent ly  

been described in which x-rays are used to dr ive the implosion. Unfortunately,  few 

deta i ls  of th is  work are yet avai lable because of i t s  secur i ty  c l a s s i f i c a t i o n ,  but 

the idea is to suspend the pe l le t  inside a high-Z outer shel l  which is then 

i r rad ia ted by a short wavelength laser. In these condit ions very high conversion 

e f f i c iency  can be obtained from laser l i g h t  to x-rays and i t  i s ,  therefore,  the 

x-ray emission which drives the implosion. Since the x-rays are emitted 

i so t rop i ca l l y ,  geometrical factors can be used to increase the i r r ad ia t i on  

uni formi ty  at the ablat ion f ront .  Using such targets core densi t ies of about 200 

times l i qu id  D-T have been obtained. 

In conclusion, there is s t i l l  a long way to go before the complex physics of 

the laser fusion process is f u l l y  understood. In recent years understanding has 

increased to the stage where there is confidence that experiments to demonstrate the 
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scienti f ic feasibi l i ty of the scheme can be completed in the next decade. The main 

thrust of this programme wil l  be made within the major fusion laboratories in the 

USA, Japan and Europe where funding for this research maintains a high level. Lasers 

such as the Neodymium glass laser NOVA at the LLNL which wil l  deliver 1OOkJ pulses 

at powers in excess of IOOTW at infra-red and visible wavelengths should ignition 

to be demonstrated in the 1980's. 

I t  should be remembered, however, that although such systems are impressive in 

the technology they employ and their sheer size, they are incapable of operating at 

the efficiencies required for a reactor. I t  wil l  take massive advances in the 

development of new high energy lasers such as the Krypton Fluoride or free-electron 

laser before a reactor becomes a reality. In that time i t  may well occur that 

alternative drivers such as accelerators delivering the energy to the pellet in the 

form of heavy ion beams may well prove more practical. Nevertheless, i t  wil l  be the 

use of lasers through which the basic physics of ICF wil l  continue to be addressed 

in the next decade. 
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DISTRIBUTION FUNCTIONS IN QUANTUM OPTICS 

R. F. O'CONNELL 

Department of Physics and Astronomy, Louisiana State University 
Baton Rouge, LA 70803 

Perhaps the simplest way of including quantum mechanics, in various 

problems in quantum optics, is by use of the classical-quantum- 

correspondence method, by means of which one replaces quantum- 

mechanical operators by complex numbers. This is carried out by 

means of quasi-classical distr ibution functions and here we address 

the question of which is the best choice of function from the large 

selection available. Whereas Glauber's P(~) distr ibut ion is useful 

in many applications, i t  does not exist as a well-behaved function 

in many others. In such cases, a more useful function is the 

generalized P-representation of Drummond and Gardiner. However, 

based on simplicity and overall appl icabi l i ty ,  we conclude that 

Wigner's function also has a claim to be the optimum choice. 

I .  Introduction 

Many problems in quantum optics involve dissipative processes as an essential 

element. The usual approach to such problems is to consider a system of 

interest, S say, coupled to a reservoir (R), and interacting with i t  via a 

potential V which results in S losing energy to R. From the f luctuation- 

dissipation theorem [1], we know that the dissipation is related to the 

fluctuations of the system in equilibrium. Of paramount interest is the time 

development of the distr ibution functions for the system. These remarks make 

i t  clear that we are in the province of irreversible stat is t ical  mechanics and 

thus--both for the purpose of putting quantum optics problems in perspective 

and also in the hope of finding the optimum way of solving such problems--we 

present in Section 2 an overview of the usual approach to tradit ional problems 

in irreversible s tat is t ica l  mechanics for comparison with the quantum optics 

situation. 

In part icular, we point out in Section 2 that perhaps the simplest way of 

including quantum mechanics is by means of the so-called classical-quantum 

correspondence (CQC), a technique or ig inal ly introduced by Wigner [2], which 

makes use of quasi-classical distr ibution functions. In Section 3 we point 
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out that there is l i t e r a l l y  an i n f i n i t e  choice of such functions and thus we 

are led to make a choice on the basis of what properties we would l ike our 

functions to have. This leads us into a discussion of the more widely used 

functions. For example, we argue that Wigner's choice of distr ibution 

function [2] has part icularly desirable properties as far as tradit ional 

problems are concerned which might suggest that this should also be the choice 

in the solution of problems in quantum optics. This leads us to examine, in 

Section 4, a miscellany of topical problems in quantum optics which have been 

treated by the use of various distr ibut ion functions. We conclude that strong 

claims can be made for the use of either the so-called generalized P- 

representation or the Wigner distr ibut ion for treating problems in quantum 

optics--our own feeling being that further investigations are required before 

def in i t ive conclusions can be reached. 

2. Irreversible Stat ist ical  Mechanics/Quantum Optics/...:an Overview 

The time evolution of a large system of particles is a common theme in a broad 

area of studies in non-equilibrium stat is t ica l  mechanics [3], quantum optics 

[4-7], and in the many phenomena which are grouped under the common umbrella 

of synergetics [8,9]. The central equation of classical s tat is t ica l  mechanics 

is the Liouvi l le equation 

BPIq'p't) =~H(q,p), P(q,p,r)1 , (1) 
@t 

where P is a time-dependent distr ibution function and (q,p) denotes the phase- 

space coordinates (ql---qN,Pl---pN) where N is the number of particles. Also, 

H is the Hamiltonian and the curly bracket denotes the Poisson bracket. The 

state of the system at a given time t is completely specified by P(q,p,t), 

which is the probability density for finding the part icle at the point q,p in 

phase space. 

In quantum-statistical mechanics, the basic equation is that of von 

Neumann: 

~t ~(t) = ( ih ) - l [H,p( t ) ]  (2) 

where ~ (t) is the density matrix, H is the Hamiltonian operator and the 

square bracket denotes the commutator. Since, as we w i l l  demonstrate in 

Section 3, the use of a CQC can be used to convert Eq. (2) into a quantum 
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Section 3, the use of a CQC can be used to convert Eq. (2) i n to  a quantum 

L i o u v i l l e  equation i . e .  a L i o u v i l l e  equation wi th quantum correct ions taken 

i n to  account exact ly ,  by the use of c-numbers as d i s t i n c t  from quantum- 

mechanical operators,  the s ta r t i ng  point  of our discussion w i l l  be Eq. (2), as 

we i l l u s t r a t e  in F ig,  I .  The rest  of th i s  sect ion w i l l  be devoted to a 

discussion of F ig.  I .  

c°c l 
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Fig. 1 I r r e v e r s i b l e  S t a t i s t i c a l  Mechanics/Quantum O p t i c s / . . . :  an Overview 
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The left-hand chain of Fig. l i l lustrates a route towards the 

tradit ional kinetic equations of stat ist ical  mechanics. First of a l l ,  the 

generalized Liouvi l le equation is rewritten exactly in terms of the BBGKY 

hierarchy [3,10], which is a set of N equations for the reduced distribution 

functions: the rate of change of the distribution function, PM say, for M 

particles (M~N-1) depends on PM+I as well as PM" However, because of the 

complexity of these exact equations, various approximations are usually made 

to reduce them to kinetic equations i .e .  equations (generally non-linear) for 

the time-evolution of the one-particle reduced distribution function. The 

most famous of such equations is the celebrated Boltzmann equation 

[3,11,12,13] 

~P + ~ " ~P + ~ ~P C(P) (3) 
~-T m ~ - ~ :  ~p 

where q and p now refer to the coordinates and momenta of a single particle 

(in contrast to the case of the N particles considered in Eq. (1)), where F is 

the external force acting on the particle, and C(P) denotes the rate of change 

of P due to coll isions with the other particles. 

Inherent in a kinetic description is the use of a Markovian approximation 

i .e .  the rate of change of P at time t depends only on i ts value at that time 

and not on i ts previous history (no memory effects). Another assumption 

underlying the derivation of the Boltzmann equation is the neglect of 

correlations caused by the interactions. This is referred to as Boltzmann's 

Stosszahlansatz and, in essence, i t  means that the time duration of a 

col l is ion ( i .e.  the time during which the particle trajectories d i f fer  

signif icantly from a straight l ine) is much smaller than the time between 

coll isions. As a result, the interaction process is confined to two-body 

collisions and the Boltzmann equation is only applicable to a dilute gas. 

Another point of note is the time reversible character of the BBGKY hierarchy 

vls-a-vls the irreversible character of the Boltzmann equation, a necessary 

but not sufficient condition for the la t ter  being the presence of interactions 

[3,13].  

There is,  of course, a host of other k ine t ic  equations [13], such as the 

Landau equation and the Vlasov equation but the Boltzmann equation is a 

prototype for  displaying a l l  the general features of k ine t i c  equations 

relevant to our present purposes. Al l  of these k inet ic  equations t rea t  a 

"system" of one par t i c le  in teract ing via co l l i s ions  with a reservoir  of N-I 

par t ic les .  This observation brings us to the second branch of Fig. i where 
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the total system of N particles is considered as consisting of a system S and 

a reservoir R interacting via a potential V. Since our interest l ies in the 

system and not in the reservoir, a trace is carried out over the R variables, 

resulting in an equation for the S variables. This is the starting point of 

many investigators in a variety of disciplines such as, for example, Zwanzig, 

Nakajima, Mori and Prigogine [14] in the general area of stat ist ical  

mechanics; Lax [5], Louisell [4], and Haken [7-9] in quantum optics and 

synergetics; and Barker and Ferry [15] in their  investigations of transport 

properties in small devices. 

Next, applying a Markov approximation leads to a quantum master equation, 

particular examples of same being the original master equation derived by 

Pauli for a single atom with line-width and the Bloch-type equations (familiar 

from NMR studies) for the case of a damped two-level atom in an electric 

f ie ld.  The quantum master equation is essentially the di f ferent ial  form of 

the Chapman-Kolmogorov equation for Markov processes [16] and i t  amounts to 

having carried out a coarse-grained averaging in time. I t  is at this stage 

that many authors use the CQC to get a c-number equation with c-number quantum 

corrections. Whereas a general expansion of the master equation is possible 

[16], the next reduction is more commonly that of making the so-called "small- 

jump" approximation to obtain the Fokker-Planck equation, from which the 

stochastic Langevin equation may be derived and vice versa. The Fokker-Planck 

and/or Langevin equations have been applied not only to a large selection of 

problems in quantum optics--which constitutes our present interest--but also 

to areas as diverse as condensed matter physics [17] and nuclear physics 

[18]. I t  should be emphasized that both methods should lead to the same 

result, as was found, for example, in investigations of rotational Brownian 

motion [19]. I t  is of interest to note that a conclusion arising from the 

lat ter  work is that the solution of the Langevin stochastic equation presented 

less mathematical d i f f icu l t ies  than the corresponding Fokker-Planck equation 

but that the lat ter  allowed results to be calculated to a higher order of 

approximation. Also, Agarwal [20] has concluded that Langevin equations are 

easier to interpret than the master equation. 

Generalizations of the Langevin equation (and hence the Fokker-Planck 

equation) include the addition of memory (non-Markovian effects) and non- 

l inear i t ies,  the lat ter  addition resulting in a complete new stochastic 

calculus due to Ito and Stratonovich [21]. 

The Langevin and Fokker-Planck equations and their generalizations have 

found wide application in quantum optics, some examples of which we wi l l  

discuss in Section 4 but before doing so, we wi l l  f i r s t  of a l l  discuss (in 
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Section 3) the method of the CQC which leads to such equations. 

In closing this section, we should emphasize that the scenario outlined 

in the block diagram of Fig. 1 is not the only route to the "Holy Grai l" .  

However, our purpose w i l l  be f u l f i l l e d  i f  i t  enables the non-expert to obtain 

some insight into the interconnection of the many different approaches to a 

~ r iad  of problems which possess, however, certain unifying aspects. 

3. Classical-Quantum Correspondence (CQC) 

In classical mechanics the average of any function of q and p, A(q,p) say, may 

be written as 

Sf (A> : dq dp A(q,p)Pcl (q 'p) (4) 

- - co  Too  

where for c lar i ty  we have added a subscript "cl" to P(q,p). The la t ter  

quantity w i l l  now be used to denote the so-called quasi-classical distr ibut ion 

function and, in general, i t  depends on~. 

In 1932, Wigner [2] presented an exact reformulation of non-relat iv ist ic  

quantum mechanics in terms of classical concepts. In particular, he showed 

that the ensemble average of a function of the position and momentum 

operators, ~(~,~) say, may be written in a form similar to Eq. (4), as 

follows: 

Ico I <~>= dq dp A(q,p)P(q,p) 

- co  - oo  

(5) 

The next question to be considered relates to the choice of P. As i t  

turns out, there is l i t e ra l l y  an i n f i n i t e  choice of such functions. However, 

i f  one demands some compelling properties then the choice considerably 

narrows. In particular, Wigner [2] chose the function 

pw(q,p)=(~5)-I f ~ dy~*(q+y)~(q-y)e 2i pyyA (6) 
. c o  

where we have assumed for s impl ic i ty that the system is in a pure state 
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~(q). Since the properties of Pw have been discussed in detail elsewhere 

[22,23] we focus our attention on the property most relevant to our present 

considerations viz. that in the force-free case the equation of motion is the 

classical one i .e.  

@Pw p ~Pw (7) 
gt m ~q 

for a one-dimensional configurational problem (to which we w i l l  confine 

ourselves from henceforth since generalization is straightforward). 

No other distribution function that we are aware of enjoys this 

property. For example, the non-negative distribution function of Husimi [24] 

contains an additional ~2 term which is not of quantum origin [23]. In 

addition, when an external potential is included [23], the quantum corrections 

which result are much simpler i f  one uses Pw in contrast to Husimi's function. 

Let us turn now to some distribution functions which, in addition to Pw' 

are those most commonly used in quantum optics. A convenient way of 

introducing these functions is by the use of characteristic functions [25,4], 

which are simply the Fourier transforms of the respective distribution 

functions. Thus, for Pw(q,p), the corresponding characteristic function is 

Cw(O, ) = exp [~ , ( 8 )  

^+ 
or, equivalent ly,  in terms of creation and annihi lat ion operators ~ and a 

(defined in terms of ~ and ~ in the usual way): 

Cw(n,n*) = <ml exp {~ (n~+n*a+)] Im>. (9) 

In quantum optics, other common choices are the normal and 

anti-normal functions, denoted by C n and C a respect ively,  where 

(IO) 

and C a is the same as C n with the order of the exponential factors 

interchanged. We remark that the distribution function corresponding to Ca,P a 

say, is the same as Glauber's widely-used P(~) distribution [4] i f ,  in the 

evaluation of the expectation value of an arbitrary operator, we f i r s t  write 
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i t  in normal ordering sequence (creation operators precede annihilation 

operators) prior to carrying out the CQC. 

I f  we now use the Baker-Hausdorff theorem and then convert back from the 

~, ~+ language to the ~, ~ language, we find that the corresponding 

distribution functions may be written in terms of Pw as follows: 

2 22 2 22 
Pa,n(q,p) = exp [~+ ½ qo ~q-~-+ ½Po ~p-~] Pw' ( l l )  

where qo2 =~/2mmand P2o = m~m/2. Next, using Eq. (7), i t  immediately follows 

that the time derivative of Pn,a is not as simple as that of Pw since i t  

contains also second derivative terms. Thus, quantum corrections to Eq. (3), 

the Boltzmann equation, are simpler in form i f  one chooses Pw" In other 

words, i f  we solve a problem via the left-hand route of Fig. 1 i t  is clearly 

best to choose Pw" Thus, we might expect the same to hold i f  we choose the 

right-hand route--the route of quantum optical investigations. In the next 

section, we examine briefly some specific applications to enable us to judge 

what happens in practice. 

4. Examples from Quantum Optics 

Glauber's P(~) function (Pa) has been the most widely used distribution 

function in quantum optics, primarily because of its convenience in averaging 

the normally ordered operator products that often arise in problems in this 

area. In particular, i t  was applied to the laser by Weidlich et al. [26], to 

dispersive optical bistabil i ty by Drummond and Walls [27], to the damped 

harmonic oscillator [28], and to a variety of other problems. However, i t  was 

long recognized [4,5,7] that the corresponding Fokker-Planck equations often 

have non-positive-definite diffusion coefficients. Nevetheless, i t  was only 

recently that this problem was taken seriously, principally in the papers of 

Drummond, Gardiner, and Walls [29,30]. This problem basically arises in 

dealing with intrinsically non-classical effects, such as photon anti-bunching 

which occurs in atomic flourescence experiments [31]. For such nonclassical 

photon fields, Pa does not exist as a well-behaved function. In order to 

avoid such problems, Drummond and Gardiner [29], introduced a class of 

generalized P-representations, which include the complex P representation, in 

which (~,m*) are replaced by the independent complex variables (~,~). Such 
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generalized representations were applied successfully to non-linear problems 

in quantum optics (two-photon absorption; dispersive b is tab i l i t y ;  degenerate 

parametric amplifier) and chemical reaction theory [29,30,32]. 

However, calculations using the generalized P representations are 

relat ively complicated. Since they were designed in effect to handle 

situations for which the Glauber distr ibution does not exist the following 

question naturally arises: why not use the Wigner distr ibution since i t  

always exists and i ts  equation of motion is simple in that i t  possesses the 

desirable property discussed in the last section? While we were pondering 

such a question in the course of completing the present paper, a paper by 

Lugiato, Casagrande, and Pizzuto [33] just appeared in which the Wigner 

distr ibution was used in the consideration of a system of N two-level atoms 

interacting with a resonant mode radiation f ie ld  and coupled to suitable 

reservoirs. The presence of an external CW coherent f ie ld  injected into the 

cavity is also included, which allows for the possibi l i ty of treating optical 

b is tab i l i ty  as well as a laser with injected signal. They then carry out very 

detailed calculations to obtain Fokker-Planck equations, which they compare 

with the corresponding ones obtained using the Glauber function, and conclude 

that the use of the Wigner function is preferable to the Glauber function. 

In the problems considered by Lugiato et a l . ,  the existence of a 

smallness parameter Ns -½ (where N s is the saturation photon number) enabled 

them to truncate at the second order, which is the essence of the Fokker- 

Planck approximation. On the other hand, Walls and Milburn [32] conclude 

that, in the case of dispersive b is tab i l i t y  and two-photon absorption, the use 

of the generalized P representation is preferable to the use of the Wigner 

function because the lat ter  gives rise to equations containing third order 

derivatives. I t  is thus clear that further investigations are required before 

def in i t ive conclusions can be reached. In particular, does the f l e x i b i l i t y  

which occurs by the use of a complex phase space give the generalized P 

representation some unique and desirable property which accounts for i ts 

success in applications? 
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QUANTUM NON DEMOLITION MEASUREMENTS 
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§i INTRODUCTION 

Current attempts to detect gravitational radiation have to take into account the 

quantum uncertainties in the measurement process. Considering that the detectors are 

macroscopic objects as large in some cases as a i0 ton bar the fact that the quantum 

fluctuations in the detector must be taken into account seems surprising. However 

the strength of the gravity waves is so weak that a displacement of the order of 

10-19cm is expected. To illustrate how the measurement process may introduce uncer- 

tainties which obscure the signal we consider the following simple example. Let us 

consider as our detector a free mass. A measurement of the position of the free mass 

with a precision ax. = 10-19cm will perturb the momentum by an amount given by 
1 

n 
Heisenberg's uncertainty relation ap 9 2ax---~l The period of the gravity waves is 

expected to be ~ 10-3sec hence a second measurement of position should be made in a 

time interval T = 10-3sec. During this time the mass will move from its initial 

position by an amount ax = AP T ~ ~T 
m 2mAx i 

Taking the detector mass equal to i0 tons, we find ax 9 5 x 10-19cm. That is, the 

uncertainty introduced by the first measurement has made it impossible for a second 

accurate measurement to determine with certainty whether a gravity wave has acted or 

not. 

It is instructive to consider measurements of momentum instead of position of the free 

mass. The first measurement of momentum causes an uncertainty in position, this how- 

ever does not feed back to disturb the momentum of a free mass. Hence subsequent 

determination of the momentum may be made with complete predictability. The momentum 

of a free mass is an example of a quantum non demolition (Q.N.D.) variable. The 

concept of quantum non demolition measurements has been introduced over the past few 
(1-6) 

years to allow the detection in principle of very weak forces below the level of 

the quantum noise of the detector. Such Q.N.D. measurement procedures have been the 



250 

subject of a number of review articles. (5-6) We shall give a brief review of the 

concepts of Q.N.D. measurements in the next two sections. 

§2 MEASUREMENTS OF A CLASSICAL FORCE 

We wish to detect a gravitational wave which we may represent by a classical force 

F(t). As our detector we may use a bar detector which we may represent by a harmonic 

oscillator. (The harmonic oscillator may also represent a cavity mode of the electro- 

magnetic field in interferometric detection schemes) 

The Hamiltonian for the coupled force-detector system is 

h~a%a + F (t)x (i) S -~ 

[a,a % ] = 1 where 

and 
= (2~ ½ (a + a T) 

0~ is the fundamental frequency of the oscillator and m is its mass. 

The equation of motion for the oscillator's amplitude in the interaction picture is 

d_~a = -i 1 F (t) ei~t (2) 
dt (2~m~) ½ 

This has solution 

a (T) 

where 

~(T) 

= a ( 0 )  + ~(T)  (3) 

T 

= -i 1 I F (t) ei~tdt 

0 

A sinusoidal force on resonance F(t) = F0sin~t acting for a time t > 2__~ induces 

F0t 
a displacement of the oscillators position 6x = ~ . Let us assume that the oscil- 

lator is in its ground state or in fact any coherent state. The uncertainty in the 

momentum and position are then given by 

Ax = A_p_p = ~h..] ½ (4) 
-zmw" 

For typical parameters of a gravitational wave bar detector (m = 106g, ~-~ = ikHz) 

Ax = 3 x 10-1~cm. This is of the same order as the expected displacement of the gravita- 

tional wave. In order that the force be unambiguously detected we require that the 

the displacement produced 6x, be at least twice the standard error Ax. This leads 

to the condition 

2 
F 0 > ~ (2~n~0) ½ (5) 

In general we require that ]~(T) I ~ i. 

(5) 
This represents the standard quantum limit (S.Q.L.) for detecting a classical force 

against a background of the detector's zero point noise. 
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~(t + T) = x(t) 

[~(t), ~(t + T)] 

For a harmonic oscillator 

§3 Q.N.D. MEASUREMENTS 

The basic requirement of a Q.N.D. measurement is the availability of a variable which 

may be measured repeatedly, giving completely predictable results in the absence of a 

gravitational wave. Clearly this requires that the act of each measurement itself 

does not degrade the predictability of subsequent measurements. This requirement is 

satisfied if for an observable AI(t) (in the interaction picture) 

[AI (t) , AI (t')] = 0 (6) 

This condition ensures that if the system is in an eigenstate of A I(t0) it remains 

in this eigenstate for all subsequent times t even though the eigenvalues may change. 

such observables are called Q.N.D. observables. 

Thus for a free particle, energy and momentum are Q.N.D. observables, position is not 

since 
^ T 

+ P m (7) 

ihT 
= (8) 

m 

[~(t), i(t + T)] = i~ si~T 
m~ 

[p(t), p(t + T)] = ihm60sin~T 

thus x and p are not Q.N.D. observables for the harmonic oscillator. 

We may introduce the quadrature phase amplitudes of the harmonic oscillator 

X2 defined by 

(~) ½ a = (Xl + iX2) e-i~t 

X1 and X2 satisfy the requirement (6) for Q.N.D. variables. 

The Xl and X2 axes rotate with angular frequency ~ with respect to the 

axes 

2 1 (t) = Xcos~t - P sint0t 
m~ 

(9) 

X1 and 

(i0) 

x and p 

(ll) 

In Figure 1 an error ellipse for the oscillator is shown. The error ellipse is 

stationary with respect to the Xl and X2 axes but rotates with respect to the 

and ~ axes. This clearly illustrates how the uncertainties in p feed back 

^ 

X2(t) = xsln~t - cos~t 
m~ 

The behaviour of Xl, X2 are most easily discussed with reference to an amplitude 

and phase diagram. In such a diagram the state of the system is represented by a set 

of points centred on the mean and contained within an error box determined by the 

variance of XI, X2. Alternatively the error box may be regarded as a contour of the 

Wigner function. 
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^ 
into x as the ellipse rotates with time. 

P 
mw ,X2 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
r 

0 
£ ; 
! i 

Figure 1 : Error box in the phase plone for a harmonic oscillator. The error box 
rotates with^respect to the x, p/~ axes but is stationary with respect 
to the xl, x2 axes. 

We shall now consider two possible Q.N.D. measurement schemes on the harmonic oscilla- 

tor. 

(a) Squeezed State Method 

The Q.N.D. variables XI and X2 obey the commutation relation 

[Xl (t) , Xz(t) ] = i~ 
m~ 

This implies the uncertainty relation 

AXI (t) AXz (t) ~ 
2m~ 

where 

and 

Ax,(t)l = V(Xi(t))½ 

V(Xi(t)) = <X'2(t)>l - <Xi (t)>2 

(12) 

(13) 

(13) 

i.e. the variance in Xi(t). 
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The standard quantum limit arises when one attempts to measure XI and X2 with 

equal accuracy. The limit to the accuracy of such a measurement (called amplitude 

and phase measurements by Thorne et.al (4)) is given by the S.Q.L. 

Axl = Ax2 ~ (~}~ (14) 

(4) 
The method (first proposed by Thorne at.el ) to beat the S.Q.L. is clear. One must 

not attempt to measure both XI and X2 but instead measure only one component. 

One can measure X! with an accuracy ~X I < t2m~ j at the expense of increased 

uncertainty in X2 (AX2 > ) . such a measurement places the oscillator in a 

state with an elliptic error box (AXl < ~2~) ½ -  < AX2). Such states are known as 

squeezed states. Squeezed states of light are presently a subject of intensive 

research in quantum optics. (7) 

This measurement technique which places the oscillator in a squeezed state is an 

example of a general class of quantum non demolition measurements. In such a Q.N.D. 

measurement scheme the first measurement places the detector in a squeezed state with 

AX I << (2~) ½. Since Xl is a constant of the motion the oscillator will remain in 

the near eigenstate under free evolution. The classical force then displaces the 

error ellipse without changing its size, shape or orientation. A second measurement 

of Xl can detect the force provided that the displacement ~X I > 2AXI. Such a scheme 

S.Q.L. provided that AX I < (2~I ½ -  . (see Figure 2) . A particular example beats the 

of such a Q.N.D. measurement scheme will be discussed in §4. 

X2 X2 

, ~Xl, 
I fl 

$XI_, 
I 

l~ % 

I I , 

% J  

(a) 
X1 

(b) 
XI 

Figure 2 : Displacement 6xz of error box by a force. 

(a) Oscillator initially in a coherent state 

(b) Oscillator initially in a squeezed state 

< 2Ax, : 2( I 

2Ax, < 6x, < 2{~) ~ 
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A Q.N.D. measurement using the squeezed state technique may monitor the time evolution 

of the force. The Q.N.D. operator evolves as 

Xl(t) = Xl(t0) - F(t') sin~t'dt' (15) 
m~ 

to 

For a system initially in an eigenstate Ig0 > 

state with eigenvalue given by 

~(t) = ~g0 + (~)½ Re(~(t)) 

As ~I 

find 

of X1 (to) it remains in this eigen- 

can be measured repeatedly over smaller and smaller intervals 

(16) 

(At ÷ 0) we 

lira ~ Re (~ (t)) ~ F (t) sin~t (17) 
L~t + 0 [ At ] 

which enables the precise time development of F (t) to be determined. 

(b) Quantum counting Measurements 

(12) 
The earliest suggested quantum non demolition measurements involved counting the 

number of quanta without destroying any, hence the origin of the name. 

Consider once again the classical force acting on the harmonic oscillator initially in 

an energy eigenstate In0>. The change in the mean number of quanta induced by the 

force 

~n = <n> - n o (18) 

= ICtl 2 FO 2 t 2  
8mhe 

The variance in the number V(n) is 

<n I D* (~)V(a*a)D(~)In> 
where 

aa t _ ata 
D(~) = e 

= f~r~(no + l) (19) 

In order to detect a force we require 

2 (2m~h) ½ F o > 
t (n O + i) ½ 

V(n) > i, that is, 

(2O) 

or 
1 I~(T) I >> 

Vn0+l 

Comparing this with the S.Q.L. given by Eq.(5) we see that the quantum counting method 
I 

reduces the S.Q.L. by a factor (n O + i)~ " Hence for a highly excited oscillator an 

arbitrarily weak force may be detected. However since there is no unique relation- 

ship between the measured energy and F 0 (O(E)>> <E> - E0) this method cannot tell 

us the precise magnitude of F0. This occurs because the energy is not a 0.N.D. 
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variable in the presence of the force and the system moves out of its original energy 

eigenstate into a superposition of eigenstates. 

If there is no classical force acting on an oscillator in a number state a series of 

measurements of n must yield a constant sequence of results. If at any time during 

a sequence of measurements a classical force of sufficient strength was present 

(i.e. i~(T) i > 1 ) then one must eventually obtain a result different from the 
n~0 + 1 

previous constant values and conclude a classical force had been detected. 

A proposed scheme to carry out a quant~n counting measurement will be discussed in §5. 

(c) Meter Readout 

Having first determined the Q.N.D. variable of the detector it is necessary to couple 

the detector to a readout system or meter. In order that the meter does not introduce 

additional fluctuations into the Q.N.D. variable of the detector it is sufficient that 

the only detector operator appearing in the detector meter interaction is the Q.N.D. 

operator of the detector. The detector readout system is then said to be "back action 

evading". If the back action evasion criterion is satisfied then the Q.N.D. variable 

obeys the criterion (6) in the presence of the detector meter interaction. This is a 

sufficient condition for a Q.N.D. measurement. 

An analysis of a Q.N.D. measurement process may be divided into two stages. The first 

stage involves solving for the time dependent unitary evolution of the coupled detector 

meter system. During this stage correlations between the state of the detector and 

meter build up. At some point the free evolution is suspended and a readout of the 

meter is made, whereupon the meter state is reduced. The second stage of the analysis 

then involves a determination of the nonunitary effect of meter state reduction upon 

the detector. 

We shall now consider two examples of Q.N.D. measurements which illustrate the squeezed 

state and quant~ counting techniques respectively. 

§4 SQUEEZE D STATE METHOD IN A PARAMETRIC AMPLIFIER 

We consider as our model of the detector meter system two coupled harmonic oscillators. 

We take as the Hamiltonian for the system 

H = H0 + H I 

H 0 = h0~ a~a + ~%~,b%b a 

H I = -~K(a%b#e -i(0Ja + ~b)t + h.c.) (21) 

where a, (b) is the boson operator for the detector (meter). This Hamiltonian 

(8) 
represents a parametric amplifier coupling in quantum optics. Analyses of a Q,N.D. 

measurement scheme based on this coupling are given in references (9) and (i0). in 

terms of the quadrature phase amplitudes 
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= (~)½ (XI + iX2) e-i~at 

= ~I ½ (~I + iY2) e-i~bt 

(22) 

the interaction Hamiltonian may be written 

H I -< (x~Y~ - 3292) (23) 

X I is chosen as the Q.N.D. observable of the detector. It is clear that the inter- 

action Hamiltonian does not satisfy the general back action evading criterion that 

31 be the only detector observable to appear in the interaction Hamiltonian. However 
^ 

solving for Xl(t) we find 
2--- 

~l(t ) = ~l(0)coshK t _/~_bb ~2(0)sin~K t (24) 
a 

Clearly [Xl(t), Xl(t') ] = 0, thus Xl(t) is a Q.N.D. variable including the 

interaction with the meter. We shall see that although the interaction is not back 

action evading in free evolution, it satisfies the requirements for a Q.N.D. measure- 

ment when the meter state reduction is performed. 

We may express Xl(t) as 

~l(t ) =~b ( Y2 (t) coth<t Y2(0) ) (25) 
sin~Kt a 

A value for Xl(t) may be inferred from a measurement of Y2(t) made on the meter. 

Under free evolution the variance in Xl(t) grows as 

^ 2 ~b V(XI(t)) = V(XI(0))Cos~ KT +- V(X2(0))sirrh2<T (26) 
a 

Hence for an initial measurement with V(XI (0~ M 0 the variance grows with time 

demonstrating the failure of back action evasion. In order to study in full the Q.N.D. 

measurement one must include the non unitary evolution due to the meter state reduction. 

We shall carry out this procedure below. 

The time evolution of the density operator for the coupled detector meter system is 

given by the master equation (in the interaction picture) 

3p _ 1 [ p] 
~t in LHI' (27) 

(11) 
Standard techniques enable one to convert the operator master equation into a 

Fokker Planck equation using the Glauber-Sudarshan P representation. (12'13) However 

since a Q.N.D. measurement process involves squeezed states which do not have a non- 

singular representation in terms of the Glauber-Sudarshan P representation it is 
(14) 

necessary to use the complex P representation. The density operator p may be 

expressed as 
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= I da,dS~da~a82P(~,t)  I ~ ' ~ 2 > < 8 ~ * ' ~ 2 . ]  ~ <81*82*lal,a2> 
C. 

1 

where z T = (~1,81,e2,82) and we have the following correspondences 

(28) 

aO +'+ SIP(z) 

a p +-~ (81 - ~ ) P ( z )  

t pa ~-+ 

~a 

P(z)Sl 

(- ~ + al)p(z) 

with similar correspondences between (b,b ~) and (~2,82). 

There are actually four independent contour integrals (i = 1,4) involved in Eq. (28) 

in the complex space of each variable. We are free to choose these contours to obtain 

a normalizable P function, providing partial integration is defined. Substituting Eq. 

(28) into Eq.(27) gives the following Fokker Planck equation for the complex P function. 

~P (z,t) = {V T IvT } 
~-~ z Az + ~ Z DV P(z,t) 

where 

and 

(29) 

and 

A = 

D = 

0 0 0 -iK 

0 0 iK 0 

0 -iK 0 0 

iK 0 0 0 

0 0 iK 0 

0 0 0 -i< 

i< 0 0 0 

0 -i< 0 0 

We shall consider the detector and meter to be initially in coherent states. The 

solution for P(z,t) assumes a multivariate Gaussian form 

{ 1 <z>)T~-1(z) ~ <z>)} p(z,t) = exp - y (z - ~ (z - 

where 

zT(t) = (<a(t)> <a~(t)>, <b(t)>, <b~(t)>) r 

(30) 
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and the eovariance matrix 

1 
o(zl = ~- 

0 Cosh2kt - 1 iSirfh2kt 0 

Cosh2kt - 1 0 0 -iSir~h2kt 

iSirfh2kt 0 0 Cosh2kt - 1 

0 -iSirfq2kt Cosh2kt - 1 0 

At this stage we are able to include the nonunitary effect of meter state reduction 

upon readout of a meter variable. 

Readout of the meter observable Y2(t) is made with result y2(t). The meter thus 

collapses into an eigenstate of Y2(t) with eigenvalue y2(t). This causes a 

nonunitary change in the state of the detector, which then becomes the initial state 

for the next measurement. We analyze the effect of meter state reduction by a variant 
(15) 

of von Neumann's projection postulate. 

In the Schrodinger picture the total system is represented at time t by the density 

operator ps(t). After readout at time T the meter is in an eigenstate of 

Y2(T) • The density operator (in the Schrodinger picture) for the total system after 

readout ps(T) may be written as 

mS(T) = NP (y2 (T)) QS (T) P (y2 (Y)) (311 

where P(y2(T)) is a projector onto the subspace spanned by Iy2(T),T>, a Y2(T) 

eigenstate and N -I = Tr(pS(T)P(yz(t)). The state of the detector after readout 

is then given by tracing out over the meter variables 

0~(T) = Trm(0S (T)) (32) 

Thus 

N<y2( I (33) 

In the interaction picture defined by 

i i 
0I(t) = exp( ~ H0t)Ds(t)exp( - ~ Hot) 

the state of the detector after readout is 

0~(T) = N<Y2(T),01pI(T)Iy2(T),0> (35) 

where we have used the property 

i 
IY2(tl,t> = exp(- { wb+bt) lY2Ct) ,0> (361 

and lY2(t),0> is an eigenstate of Y2(01 . 

Expanding QI(T) in terms of the complex P representation we find the complex P 

representation for the detector after readout is 

<S2* I Y2 (T) ,0> 
P(~I,gI,T) = ~ ~ da2dSzP(z,T)<Y2(T),01~2> <82.Ia2> 

C2 C2~ 

where P(z,t) is given by Eq.(30). Details of the integration are given in Ref.(10). 
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We shall quote here the results for the variances in the detector observables after 

readout. 

V2 (X~ (~)) ~ 1 
2~ CoS~2Kt 

a (38) 

v(X 2 (T)) 2~ Cos~2<t 
a 

<Xl (T) > <XI (T) > 2 
Coslh2Kt + CotIN2<T + 1 xl (T) (39) 

where xl(T) is the inferred value. 

After the measurement the detector is in a minimum uncertainty squeezed state. 

In the limit of <T ÷ ~ we find 

v(x1(~)) + 0 
(40) 

<~I(T)> + x1(T) 

Thus no matter how small the measurement time T, the coupling K may be made 

sufficiently large to ensure that upon readout the detector is placed in an eigenstate 

of the measured observable, with eigenvalue equal to the measured result. This is the 

usual limit for a perfect measurement. The detector meter system will then remain in 

an Xl, Y2 eigenstate for all time. 

As in practice the limit KT ÷ ~ does not apply the detector will not be placed in a 

perfect eigenstate. Due to the failure of back action evasion it will move out of 

this eigenstate during the free evolution stage of the next measurement (see Eq.(26)). 

Despite this, after a second measurement (with the meter reprepared in a coherent 

state) 

1 
V(XI(T)) = 2~ (2Cos~h~<T - i) (41) 

a 

A 
which tends to zero for <Y + ~. The possible error in the inferred value of X1 at 

a third measurement (after the same time T) is 

V(XI (~)) ~ ~ C°sh 2KT (42) 
2~ (2Coslh%KT - i) a 

This error may be made arbitrarily small, no matter how short the measurement times. 

Thus the value obtained from the third measurement can be predicted with arbitrary 

certainty from the result of the second measurement. This is precisely what is 

required of a Q.N.D. measurement. The failure of back action evasion was not crucial 

in this system since X1(t) remained a Q.N.D. variable of the detector plus meter 

system. 

Damping has not been included in the above analysis. The effects of damping were 

discussed in Ref.(10) where it was shown that damping even for a zero temperature heat 
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bath will degrade the squeezing as e -t/TD where T D is the characteristic damping 

time. In order to obtain accurate Q.N.D. measurements in the presence of damping it 

is necessary that the time between measurements be much less than YD" 

§5 QUANTUM COUNTING MEASUREMENTS IN FOUR WAVE MIXING 

A different kind of Q.N.D. measurement is provided by the quantum counting method. 
(3) 

Unruh pointed out that this would require a quadratic coupling to the oscillator 

coordinate. 

As an example of a quantum counting measurement we consider the following Hamiltonian. 

H = ~ a%a + ?~0bb%b + ~x'a%a(b e(t) + b%e*(t)) (43) a 

where a and b are bose operators for the detector and meter modes respectively. 

e(t) is a classical field. Such a Hamiltonian may arise in quantum optics in a 
(16) 

four wave mixing process. 

% 
Choosing a a as the Q.N.D. variable of the detector the interaction Hamiltonian 

satisfies the back action evading criterion. 

The evolution Of the number operator for the meter mode is given by the equation 
! 

Nb(t) = (xt)2G~a + iXtNa(b(0 ) - b~(0)) + Nb(0) (44) 

where 

Nb (t) = b%(t)b(t)' Na = a#a 

Ga = (a%a)2 , X = X '£ 

and we have assumed the classical field is resonant with the b mode (e(t) = eeZ~bt). 

We shall choose G as our Q.N.D. variable rather than N . If we assume the meter a a 

is initially in a number state I~(0) > we have 

<Nb (t)> = (Xt) 2<Ga > + nb~0) (45) 

Thus from a measurement of Nb(t) at time t with result nb(t) we may infer a value 

ga for G given by a 
nb(t) - nb(0 ) 

ga = (Xt) 2 (46) 

The possible error in the inferred value is given by Ag a where 
~(t) 

and Anb(t) = V½(Nb(t)) 
Aga (Xt) 2 

where 
A 

V( (t)) is the variance in Nb(t). For the initial meter state 

(Aga)2 = V(G a) + 2<Ga> (nb(0) + ½) 
(Xt) 2 

Inb > we find 

(47) 

The first term is the intrinsic uncertainty in ga' the second term is the additional 

uncertainty contributed by the measurement. Thus provided the intrinsic uncertainty 
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is small we may determine a value ga accurately provided X t is sufficiently large. 

The above considerations apply to the unitary evolution. We shall now consider the 

non unitary effect of the readout of the meter. 

If Qs(t) is the Schrodinger picture density operator of the coupled detector meter 

system the density operator for the total system after readout is(t) is given by 

is(t) = Np (nb (t)) Qs (t) p (nb (t)) (48) 

where P(nh(t))__ is a projector onto the one dimensional subspace spanned by J~(t)> 

of Nb(t) and N -I = Tr(pS(t)P(nb(t)). an eigenstate 

A similar relation holds in the interaction picture. Using 

-iolb%bt e-i~nb (t) 
e Jnb (t) > = I~(t)> 

we may show that 

pI(t ) = ~ (nb(t)) pI (t) P(nb (t)) (49) 

The density operator for the detector after readout is 

p~(t) = Trm(pI (t) = <nb(t ) jpI(t)Jnb(t)> (50) 

We choose as the initial density operator of the system 

p(O) = 1,> J~0)><nb (0)I<*I (51) 

where J~> is the initial state of the detector. The initial number distribution of 

the detector is 

P(na) = J<naJ~> J2 (52) 

The postreadout number distribution of the detector is 

P(na ) = <ha J p~ (t) Jna> (53) 

This expression may be evaluated using the unitary evolution operator in the inter- 

action picture 

U(t,0) = exp{Na(£(t)b~- e*(t)b)} (54) 

where 

e(t) = -ixt 

Thus we find 

P(na) = NJ<nb(t) Jexp na(E(t)b ~ - g*(t)b)}Jnb>J2p(n a) (55) 

Evaluating this expression for the meter initially in the ground state (n~0) = 0) 

yields 

where 

(na) = N 1 x k -x e P(n a) 

x = (naXt) 2 

k = ga(Xt) 2 

(56) 



262 

The distribution for P(n a) is peaked around na = -a~ and becomes more sharply 

peaked as X t increases. In Fig.(3), P(n ) is plotted for two different values of a 

X t showing the narrowing of the distribution as X t is increased. Thus for X t 

it is possible to place the detector in a near eigenstate Ina > of Ga where large 

= g/~a " Since the interaction is back action evading the detector once placed in n a 

a near eigenstate of G will remain in this eigenstate unless acted on by an external a 

force. Thus subsequent measurements must yield the constant sequence {ga } of 

results. Any departure from this sequence may be taken as evidence of the presence 

of an external force. As stated in §3(b) it is possible only to detect that a force 

has acted and it is not possible to reconstruct the time dependence of the force since 

the number operator and Ga are not Q.N.D. operators in the presence of the force. 
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CONCLUSION 

The effort to detect gravitational radiation has motivated renewed interest in the 

quantum limitations to measurements. We have shown that in principal quantum mechanics 

does not preclude the detection of gravitational radiation. 

We have also given a complete analysis, including state reduction, of two possible 

schemes to make Q.N.D. measurements. These are based on a "squeezed state" detection 

scheme and a quantum counting detection scheme. 

It has been demonstrated that despite initial misgivings the parametric amplifier is 

capable of making "squeezed state" Q.N.D. measurements. This conclusion is reached 

by taking fully into account the reduction of state which occurs in a measurement 

sequence. 
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